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Sl State of the art feature engineering for credit card fraud detection consists in creating descriptive features that contain historical knowledge about the card-holder.
eilgl= These single statistics are called aggregated features and can be for example: the amount spent or the number of transactions done in a certain amount of time with the
same merchant category or country [2],[3].

Motivation
State of the art weaknesses Proposed approach
Descriptive features are single statistics =) Explicit generative models of the sequences of transactions
Single statistics based on expert knowledge =) Supervised modelling of amount and timing behaviors
Only card-holder based features ) Modelling card-holder and terminal sequences

Multiple perspective HMM-based feature engineering

Multiple perspective HMM training:

Classification:

Raw Transaction Data Enriched Transaction Data Random Forest Classifier

Three binary perspectives:
e Card-holder VS Terminal sequences.

l(:onect sequences for CH & TM TAddition of 8 HMIM-based features e Fraudulent VS Genuine behavior modelling (at least 1

fraud vs O fraud in the training sequences).
® Observed variable: Amount VS Timing of transactions

w HMM-based feature
M

Uine ) g distributions modelled with Hidden Markov
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Features construction:
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Uine 8 HMM based feature: Likelihood that the last 3
%HMM-baSGd feature transactions have been generated by a given HMM.

Same process with time-delta as observed variable

Experimental setup 10 -

Real world dataset: 4.7*10’ credit card transactions from Belgium Ay
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Improvement in fraud detection when using HMM-based features

Multiperspectives HMM-based features are a strong tool to improve fraud detection :
® 15% increase in fraud detection compared to state of the art [3].
® Terminal perspective brings 20% increase by itself.

Interesting properties :

e HMM models the dependencies between the events of the sequences.

e Modelling different perspectives provides a fine-grained description of the past of the transactions.
e This feature engineering can be extended to any dataset with interactions between users.

The framework can be found at: https://qgitlab.com/Yvan Lucas/hmm-ccfd
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