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Abstract

We introduce a framework to discover interpretable regression models for high-stakes
decision making in the context of safety-critical systems. The core of our proposal is
a multi-objective hierarchical symbolic regression algorithm able to compute cluster-
specific rankings of regression models ordered by increasing complexity. We discover
the hierarchical structure by clustering the features’ importances of a post-hoc ex-
plainability framework (viz., SHAP) applied to a highly flexible predictive model
(viz., XGBoost). We rely on a symbolic regression algorithm based on the simulated
annealing meta-heuristic to infer sparse linear models which may include non-linear
effects (e.g., log-transforms, multiplicative interactions...). This search is guided by
two objectives: maximizing predictive performance and minimizing complexity. It
ends on a list of Pareto-optimal models that fosters a dynamic interpretative process:
the user navigates from the least to the most complex model and decides the ones he
can trust depending on whether he understands them, and whether he is satisfied by
the quantified uncertainty of their parameters and predictions. Our approach achieves
promising results when compared to more than ten other interpretable or black-box
predictive models on eleven public regression datasets of various volumes, dimension-
alities or domains, and on a proprietary dataset for highway crash prediction. On
this last dataset, we demonstrate the usefulness of our new ranking-by-complexity of
inherently interpretable models.
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1. Introduction

To make high-stakes decisions in safety critical systems based on the output of a
data-driven predictive model, it is necessary to consider if the model is trustworthy.
Interpretability helps assessing trustworthiness by making clear what the model knows
when it makes a decision. Indeed, a predictive model is interpretable when the process
leading to a prediction is understandable to humans (Rudin et al., 2022). Elucidation
of trustworthiness is also facilitated by stressing what a predictive model does not
know, through a clear quantification of uncertainty (Tomsett et al., 2020).

The constraints that make a predictive model interpretable are domain-specific
(Rudin, 2019). In this work, we choose to focus on regression analysis for safety critical
systems with access to tabular data where the explanatory variables are meaningful.
In that context, we consider that the prediction process is fully understandable when
it is expressed as a simple formula of the observed variables.

However, for tabular data, given a sufficiently rich hypothesis space, many mod-
els can approach the minimum error rate. This phenomenon is referred to as the
Rashomon effect (Breiman, 2001). Also, due to various inductive bias, important as-
sociations between observed variables and target can often be indistinguishable from
spurious associations specific to the dataset (Teney et al., 2022). Therefore, models
with the minimum error rate are not necessarily the best suited to help decision-
making. In the absence of precise prior knowledge of the conditional independencies
relationships between the variables, it may be better to discover a set of potential
predictive models and to let the user decide which of them is more trustworthy.

Based on these observations, we propose a framework that fosters a dynamic
interpretative process by computing a small subset of cluster-specific models from a
large hypothesis space. Our approach can be broken down into two main steps.

Firstly, we consider that data can often be partitioned so that refined predictive
models apply to different parts more efficiently and more meaningfully than a global
model. We discover this structure by clustering the instances based on the features’
scores returned by the SHAP (Lundberg and Lee, 2017) post-hoc analysis of a flexible
non-parametric model.

Secondly, we design a symbolic regression (La Cava et al., 2021) algorithm based
on simulated annealing to explore an hypothesis space made of simple mathematical
expressions that correspond to expansions of linear models with the possible addition
of some transforms of the original variables (e.g. compositions of log-transforms, mul-
tiplicative interactions, etc.) and with the use of a regularization term to control the
bias/variance trade-off. To explore the hypothesis space, the meta-heuristic search
conducts a multi-objective optimization (Stinstra et al., 2008) on both a predictive
performance metric and a complexity metric. The complexity metric promotes inter-
pretable models, especially by rewarding sparseness and by penalizing colinearities.
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The search ends with a list of Pareto optimal models. These models are learned
by bayesian inference which ensures that they are formed through an interpretable
generative process and that they offer a clear quantification of uncertainty. The user
can then navigate among these models, from the least to the most complex, and
decide if he can trust a given model depending on whether he understands it, and
whether he is satisfied by the quantified uncertainty of its parameters and predictions.

We test our framework on twelve datasets, covering a broad variety of contexts
in terms of volume, data types and domains. Eleven of them are public regression
datasets. The last is a proprietary dataset in the domain of highway safety analysis
where the task is to build a crash prediction model. We obtain very promising results.
Our framework outperforms fully interpretable models such as linear models or shal-
low decision trees while getting close to non-parametric models. In addition, through
a realistic case study conducted on the highway network dataset, we demonstrate how
our framework enables a dynamic interpretative process that can help field experts
develop new safety policies.

The rest of the paper is organized as follows. Section 2 introduces the related
work on crash predictions models, model interpretability and symbolic regression.
Section 3 describes the proposed method, from the automatic discovery of a hierar-
chical structure in the data, to the elaboration of Pareto optimal models for each
cluster. Experimental results are discussed in Section 4. Finally, in Section 5, we
illustrate on the highway network dataset the main components of the dynamic in-
terpretative process made possible by our hierarchical symbolic regression models.

2. Related Work

In this section, we first introduce key concepts of model interpretability. Then, we
present the main approaches used for crash prediction modeling, a representative case
of safety-critical systems, with a focus on their interpretability. Finally, we introduce
references on symbolic regression, the strategy we used to model crash data.

2.1. Model interpretability
In many sensitive area such as highway safety, AI systems are being used to assist

field experts in making high stake decisions which may indirectly affect humans’ lives.
Therefore, stakeholders expect these systems to compel to several properties such as
trustworthiness, confidence, fairness, accessibility and interactivity (Arrieta et al.,
2020). Some predictive models, such as rule-based systems, generalized linear models
(GLM) (McCullagh and Nelder, 2019), generalized additive models (GAM) (Hastie
and Tibshirani, 2017) or shallow decision trees are commonly considered as being
inherently interpretable and, indeed, they meet all of the above criteria. Other models,
such as ensemble of decision trees or deep neural networks, are able to produce highly
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flexible decision boundaries and can therefore reach better predictive performance on
some datasets. However, they tend to work like black boxes. Post-hoc explanations
methods are then necessary to provide some interpretability.

Let us introduce briefly the most prominent representatives of these methods.
First, global explanation methods such as partial dependence plots (Friedman, 2001)
or Sobol indices (Sobol, 2001), quantify the main effects and the interaction effects of
the explanatory variables on the dependent variable. Then, some methods simulate a
black box model with a simpler, more interpretable one, through distilled additive ex-
planations (Tan et al., 2018) or subspace explanations (Lakkaraju et al., 2019). Also,
local explanation methods, such as LIME (Ribeiro et al., 2016) or SHAP (Lundberg
and Lee, 2017), focus on learning simple local approximations to explain individual
predictions.

The machine learning research community offers nuanced perspectives about the
merits of post-hoc explanations. As a representative example, (Lipton, 2018) suggests
that post-hoc explanations should not be ruled-out as valid, although indirect, means
of knowledge about the underlying data generating process. He also underlines the
potential risk of focusing on misleading information when relying on post-hoc explana-
tions. Moreover, he considers that transparent linear models may not always be more
interpretable than deep neural networks (DNN) because they often need heavily engi-
neered features to obtain similar performances. Likewise, (Poursabzi-Sangdeh et al.,
2021) observe that practitioners can be affected by the information overload phe-
nomenon when the number of features becomes too large. Otherwise, (Rudin, 2019)
emphasizes the importance of taking into account the whole data analysis process,
including the preprocessing steps: “when considering problems that have structured
data with meaningful features, there is often no significant difference in performance
between more complex classifiers (DNN, boosted decision trees, random forests) and
much simpler classifiers (logistic regression, decision lists) after preprocessing”. She
points out that there is not necessarily a trade-off between accuracy and interpretabil-
ity: performance gaps can be reduced iteratively through better data processing and
model understanding. The latter is facilitated by the use of interpretable models.

In our work, we focus on predictive models used to inform high stake decision
making processes. Therefore, we consider that effective parametric models with simple
functional forms are more desirable than post-hoc explanations of black box models
since they directly provide the marginal effects of the explanatory variables.

2.2. Crash Prediction Models and their interpretability
Many methods have been proposed for crash frequency analysis (Lord and Man-

nering, 2010). The parametric statistical models, mostly represented by GLM, explic-
itly associate the crash related variable to a vector of explanatory variables. Crash
frequencies being positive integers, they have originally been modelled by Poisson
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regressions (Jones et al., 1991; Joshua and Garber, 1990; Miaou, 1994). However, an
over-dispersion phenomenon is often observed in highway safety studies. Therefore,
the more flexible Poisson-gamma models, also called negative binomial models, being
able to adjust the variance, are often preferred to Poisson regression for crash predic-
tion (Miaou and Lord, 2003; Lord et al., 2005; El-Basyouny and Sayed, 2006; Lord
and Kuo, 2012). With the above models, roadway safety experts can understand
the risk factors through the analysis of a few parameters associated with uncertainty
estimates.

CPM can also be black box models, such as SVM (Li et al., 2008) or artificial neural
networks (Zeng et al., 2016; Chang, 2005). With their ability to model non-linear
relationships, they often have better predictive performance than Poisson-gamma
models. They have been supplemented by sensitivity analysis methods to give access
to an estimate of the relationship between observed variables and crash related ones
(Li et al., 2008; Yu and Abdel-Aty, 2013). Nevertheless, these methods (e.g. partial
dependence plots) assume independence between variables and may lead to skewed
interpretations in presence of multicollinearities (Molnar, 2020). (Khoda Bakhshi and
Ahmed, 2021) compare four explanation tools, including partial dependence plots
(PDP), individual conditional expectation (ICE), centered ICE, and accumulated
local effects (ALE). They validate that PDP should not be the unique explanation
method and must be accompanied by ICE. For highly correlated spaces they also
indicate that ALE plots should be endorsed. More recently, several studies (Mihaita
et al., 2019; Parsa et al., 2020) use SHAP (Lundberg and Lee, 2017) to identify
influencing factors and their interactions for incident duration prediction and real-
time accident detection.

Finally, parametric models such as GLM can be refined into multilevel models
to account for correlated responses within clusters (Jones and Jørgensen, 2003; Kim
et al., 2007; Huang and Abdel-Aty, 2010). For instance, crashes occurring in a given
geographical region may possess specific characteristics while not differing entirely
from crashes in other regions. Ignoring this may produce misspecified and poorly
estimated models (Jones and Jørgensen, 2003). In (Veran et al., 2020), we automated
the discovery of such a hierarchical structure by analyzing the results of the SHAP
post-hoc explanations of a highly flexible black box machine learning model. In this
paper, we further exploit the discovery of this hierarchical structure by using symbolic
regression to capture sparser or more complex but still interpretable relationships
between the explanatory variables and the crash count.

2.3. Symbolic Regression
Symbolic regression (SR) consists in exploring a large space of functional forms

to discover a predictive model with a good trade-off between accuracy and simplicity.
Each element of this space is a parametric regression model whose performance is

5



measured (e.g., with cross-validation) on a given dataset after fitting its parameters.
Thus, both the parameters and the functional form of a predictive model are learned
based on available data. A wide variety of approaches have been tried to effectively
explore the space of functional forms. Many of them are based on genetic program-
ming (GP) (McKay et al., 1995; Augusto and Barbosa, 2000; Schmidt and Lipson,
2009; Haeri et al., 2017; Burlacu et al., 2020; La Cava et al., 2021) where a population
of mathematical expressions evolves through selection, crossover and mutation to im-
prove a fitness function. As another example, the metaheuristic algorithm of Pareto
simulated annealing (Stinstra et al., 2008) has been used to discover a set of models
which are optimal in terms of a balance of both accuracy and simplicity metrics.
Thanks to the use of Meijer G-functions, SR can also be approached by algorithms
based on gradient descent (Alaa and van der Schaar, 2019). Bayesian processes, with
algorithms based on the Markov Chain Monte Carlo strategy have been used as well
to solve the SR problem (Jin et al., 2019).

Finally, recent studies apply deep learning methods to symbolic regression. SR
based on neural networks (Udrescu and Tegmark, 2020) can discover hidden simplic-
ity in the data (e.g. symmetry, separability) to decompose complex problems into
simpler sub-problems. Lately, this approach has been improved with the integration
of an information complexity metric by means of Pareto optimization (Udrescu et al.,
2020). (Petersen et al., 2019) use a hybrid approach that combines genetic algorithms
and a recurrent neural network (RNN) trained by reinforcement learning to generate
better symbolic models at each iteration. Finally, (Valipour et al., 2021) consider
the problem as a sub task of language modelling and train a generative RNN model
with reinforcement learning to produce symbolic equation skeletons whose constants
are further adjusted by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
(Fletcher, 2013).

SR finds applications in numerous domains such as physics (Schmidt and Lipson,
2009), finance (Chen, 2012), climate modeling (Stanislawska et al., 2012) or renewable
energies (La Cava et al., 2016). So far, only few studies applied symbolic regression to
safety analysis. (Meier et al., 2014) use prioritized grammar enumeration, a dynamic
programming version of symbolic regression, to predict crash severity a few millisec-
onds before collision. (Patelli et al., 2020) design a GP-based symbolic regression to
predict the traffic flow. To the best of our knowledge, symbolic regression has not
been applied to long term crash predictions.

3. Interpretable hierarchical symbolic regression

3.1. Overview
In this section, we introduce our proposed framework, made of three modules

depicted in Fig. 1. The hierarchical structure module clusters the dataset under
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Figure 1: Proposed framework for an interpretable hierarchical symbolic regression

knowledge of the dependent variable. To do this, we draw from an analysis of a flex-
ible black box model with the SHAP (Lundberg and Lee, 2017) explanatory frame-
work. Then, to the whole training dataset and to each cluster, we apply a variant of
the symbolic regression (SR) method to find expansions of linear models with effec-
tive and interpretable functional forms. To this end, we designed a multi-objective
simulated annealing algorithm to solve the SR problem. Thus, we discover Pareto
optimal predictive models with various trade-offs between accuracy and complexity.
In our case, symbolic regression serves two purposes. First, it discovers global models,
learned from the whole training dataset, that capture the associations between the
explanatory variables and the target. Second, based on the hierarchical structure of
the instances, our SR-based algorithm implements a partial pooling strategy to refine
a global model into cluster-specific ones.

3.2. Supervised learning of a hierarchical structure
As in our previous work (Veran et al., 2020), we first train a state-of-the-art black

box model. We select XGBoost1 (Chen and Guestrin, 2016), a gradient boosting
tree model known for its robustness, computational efficiency and high accuracy on
tabular datasets (Chen and Guestrin, 2016; Borisov et al., 2021). Then, we apply
a SHAP (Lundberg and Lee, 2017) analysis to quantify the contribution of each
original explanatory variable to each individual prediction. To each observation,
SHAP associates a linear function g:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i (1)

1https://xgboost.readthedocs.io/en/stable/
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Figure 2: Forceplot of the explanatory variables’ contributions to the estimated crash count for a
specific observation. On this example, the traffic has the biggest positive contribution and explains
most of the crash count shift from its overall expected value.

where M is the number of simplified features z′i ∈ {0, 1}M and ϕi ∈ R are their
contributions which correspond to the game theoretic concept of Shapley values.

Among the different implementations of SHAP, we select TreeSHAP, an efficient
tree-based algorithm for fast and consistent computations of exact Shapley values
(Lundberg et al., 2018, 2020). TreeSHAP accounts for feature dependence and also
reduces the complexity of Shapley value computation from exponential to low order
polynomial time when compared to kernelSHAP, the initial model-agnostic implemen-
tation of SHAP (Lundberg et al., 2018). Moreover, (Lundberg et al., 2020) observed
that TreeSHAP consistently outperforms alternative methods across a benchmark of
21 different local explanation metrics.

Furthermore, in (Lundberg and Lee, 2017), the authors also propose a forceplot
visualization (see Fig. 2) to materialize how much each contribution shifts the output
relatively to the overall expected value of the black box model.

When applied to all observations, the SHAP forceplots can be clustered by sim-
ilarities of their profiles. For example, on the highway network dataset, we discover
clusters of roadway segments which are similar based on how the black box model
transforms the original explanatory variables into an accident count. More precisely,
we do a hierarchical agglomerative clustering of the observations based on the explana-
tory variables’ contributions as provided by the SHAP analysis. We use the Ward
linkage criteria and the optimal number of clusters is set by detecting the greatest
increase in the squared Euclidean distance between clusters (Thorndike, 1953). We
also train a decision tree classifier to learn how to associate a new observation to
a cluster. In Section 4, we report on cross-validation measures showing, on various
datasets, that this association is very accurate.

3.3. Symbolic Regression with Pareto simulated annealing
3.3.1. General description

Most versions of symbolic regression (SR) discover an expansion of a linear model
with the addition of non-linear effects by searching a space of functional forms. Sec-
tion 2.3 gave an overview of the various methods that have been used to perform
this search. Among them, we select simulated annealing, an effective metaheuristic
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Figure 3: A functional form associated with a set of expression trees.

known for its robustness in optimization problems involving a large search space (Eren
et al., 2017; Delahaye et al., 2019). Thus, we represent the problem as a local search.
Moreover, we adopt a multi-objective extension of the simulated annealing algorithm
to perform the search while optimizing both the complexity and the accuracy of the
models (Stinstra et al., 2008). The search ends on a set of mutually non-dominated
predictive models, the Pareto front.

3.3.2. Definition of a solution
The functional form of a model is extracted from a set of expression trees. Each

expression tree is perfect, binary and consists of internal operator nodes and leaves.
Leaves are either represented by a constant or an explanatory variable. Operator
nodes can be unary (e.g., cos, sin, tan, exp, ln, left, right) or binary (e.g., +,×, /)
and have two children. For unary operators, we indicate with the subscripts " l " (for
"left") and " r " (for "right") to which child the operation is applied. For instance, if
the operator is ln l, then the logarithm is applied to the left child. The left and right
operators apply the identity function to the left and right child, respectively.

We extract the symbolic expression by a breadth-first traversal of the expression
tree. In practice, as operators, constants and input variables are defined with Sympy,
an open-source Python library for symbolic computation (Meurer et al., 2017), the
traversal returns a Sympy expression. Finally, the functional form S of a solution
is obtained by the combination and algebraic simplification of the Sympy symbolic
expressions of a set of expression trees (see Fig. 3).

3.3.3. Initialization of a first solution
Function initialize of algorithm 1 generates a first solution represented by a set

Mcur of random expression trees, with Scur the associated functional form. To this
end, this function first creates balanced binary trees, each of the same depth. Then,
for each tree, an inorder traversal associates an index to each node. Odd indices refer
to internal nodes while even indices refer to the leaves (see Fig. 4a). In this way, we
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have an efficient means to search for a node in a tree and to know directly what type of
node it is (see Section 3.3.4). At the same time, internal nodes are initialized with an
operator chosen with equiprobability from the set of predefined operators introduced
in Section 3.3.2. Each leaf has a 50% probability of being initialized either to a
constant or to one of the explanatory variables. In the latter case, each explanatory
variable is equiprobable.

Algorithm 1 Symbolic regression with Pareto simulated annealing
Require: m: number of expression trees; Tmin = 0.0001: initial temperature (heat-

ing phase) and minimum temperature (cooling phase); λh = 1.15, λc = 0.85: ra-
tios between two adjacent temperatures in the heating phase and cooling phase,
respectively; sh = sc = 300: number of iterations between two updates of tem-
perature; γc = 1.15: ratio that controls the growth of sc; max: maximum number
of iterations during the cooling phase.

1: function Simulated Annealing(Tmin, λh, sh, λc, sc, γc,max)
2: T = Tmin ▷ Annealing temperature
3: ζ = ∅ ▷ Pareto front
4: acc = 0, rej = 0 ▷ Number of accepted and rejected solutions
5: α = 0 ▷ Acceptance rate
6: i = 0
7: Mcurr,Scurr ← initialize (m)
8: while α ≤ 0.9 do ▷ Heating phase
9: i, ζ,Mcurr,Scurr, acc, rej ← explore(T, i, ζ,Mcurr,Scurr, acc, rej)

10: if i mod sh = 0 then
11: T ← T × λh, α← acc/(acc+ rej)
12: acc← 0, rej ← 0

13: i = 0, ζ = ∅
14: Mcurr,Scurr ← initialize (m)
15: while T > Tmin and i < max do ▷ Cooling phase
16: i, ζ,Mcurr,Scurr, acc, rej ← explore(T, i, ζ,Mcurr,Scurr, acc, rej)
17: if i mod sc = 0 then
18: T ← T × λc, sc ← sc × γc

19: return ζ

3.3.4. Neighbourhood of a solution
Function generate of algorithm 2 generates a new solution Snew in the neigh-

bourhood of the current solution Scur. It randomly selects an expression tree from
Mcur and a node index from {0, ..., 2T −2}, T being the tree depth. Then, a recursive
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search finds the node with the selected index. When the node is an operator (viz., its
index is odd), it is replaced by a randomly selected operator. Likewise, when a leaf
is selected (viz., its index is even), it is replaced by a randomly selected constant or
explanatory variable. Fig. 4 illustrates this process.

If unchecked, function generate could lead to ill-defined operators. For instance,
a logarithm could be applied to a potentially negative domain. Therefore, function
integrityCheck infers recursively the domain of each operator node and, based on
rules from interval arithmetic, checks its validity (Table 1 introduces some of these
rules). With interval arithmetic, we have an efficient way to ensure that the func-
tional form generated from the random process does not contain any undefined values
(Keijzer, 2003). For more details on the integrity check, we refer to (Stinstra et al.,
2008).

(a) x1x2 + x2 (b) x1 + 2x2 (c) x1 + 2x2 (d) x1 + x2 + x0x2

Figure 4: A sequence of transformations applied to an expression tree. (a) An initial expression
tree. Blue integers refer to node indices. (b) A transformation is applied to operator node 1, thus
modifying the underlying functional form. (c) The transformation applied to leaf node 6 is muted
due to its left operator parent. (d) Later in the process, node 6 can be reactivated when its parent
is transformed.

Operation Lower bound Upper bound Invalid if
[a, b] + [c, d] a+ c b+ d
[a, b]− [c, d] a− d b− c
[a, b]× [c, d] min{ac, ad, bc, bd} max{ac, ad, bc, bd}
[a, b]/[c, d] min{a/c, a/d, b/c, b/d} max{a/c, a/d, b/c, b/d} 0 ∈ [c, d]
left([a, b], [c, d]) a b
ln l([a, b], [c, d])

a ln(a) ln(b) a ≤ 0
a ln l designates a ln operator applied to the left child

Table 1: Rules for interval arithmetic, from (Stinstra et al., 2008, p.318). We suppose that an
operator node has two children. The left one is defined on [a, b] and the right one on [c, d].

3.3.5. Cost of a solution
The cost of a solution is measured in terms of both the prediction error (see

function measurePerformance of algorithm 2) and the complexity of the functional
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Algorithm 2 Pseudo code of function explore

1: function explore(T, i, ζ,Mcurr,Scurr, acc, rej)
2: Mnew ← generate(Mcurr)
3: if integrityCheck(Mnew) then
4: Snew ← simplify(Mnew)
5: if Snew ̸= Scurr then
6: perfnew ← measurePerformance(Snew)
7: complnew ← measureComplexity (Snew)
8: if accept(perfnew, complnew, perfcurr, complcurr, ζ, T ) then
9: ζ, Mcurr, Scurr, perfcurr, complcurr ← update(

ζ, Mnew, Snew, perfnew, complnew)
10: acc← acc+ 1
11: else
12: rej ← rej + 1

13: else
14: Mcurr ←Mnew

15: i← i+ 1

16: return i, ζ,Mcurr,Scurr, acc, rej

form (see function measureComplexity of algorithm 2).
To obtain a robust estimate of the prediction error of Snew, we compute the

average RMSE on the validation subsets of a 5-fold cross-validation process. On each
training subset, the coefficients βi of Snew are learned by solving an l2-regularized
linear regression. The regularization parameter is determined on each training subset
of the 5-fold cross-validation by an efficient generalized cross-validation (Golub et al.,
1979). Once the estimate of the prediction error is obtained, the coefficients βi are
fitted one last time on the whole training dataset.

We improve the strategy introduced in (Stinstra et al., 2008) to propose a new
measure of the complexity of a solution. We penalize both the collinearities and
the number of terms present in the symbolic expression of the functional form. The
complexity of a solution S composed of m terms is defined as:

Complexity(S ) =
m∑
i=1

(
1 + max

({
|rij|; j ∈ {1, 2, ...,m} \ i

}))
Ci (2)

where rij is the Pearson’s correlation coefficient, computed on the training dataset,
between terms i and j, and Ci is the complexity of the term i. We use algebraic rules
to compute the complexity of each term, some of which are presented in Table 2.
The complexity of a unary operator (e.g., the natural logarithm) is determined by
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Term i Complexity Ci Example Computed Ci

const 0 2 0
x 1 x4 1
f(x)n n× C(f(x)) a x2

2 2
f(x)× g(y) C(f(x)) + C(g(y)) x1x

2
2 3

f(g(y)) C(f(x))× C(g(y)) ln(3x2
2) Cunary(ln)× 2 b

a C(.) is the complexity of the inner function
b Cunary(.) is the complexity of the unary operator

Table 2: Algebraic rules used to compute the complexity of each term, adapted from (Stinstra et al.,
2008, p.320)

approximating the operator, on its inferred domain, by a polynomial of increasing
degree (at most 10) until the score of the fit, as measured on a validation set, is below
a predefined threshold. The complexity of the unary operator is then defined as the
degree of the best polynomial approximation. It should also be noted that, according
to equation 2, the more terms a solution has, the more complex it is. We were able to
confirm experimentally that the measured complexity represents well the complexity
perceived by the safety experts.

3.3.6. Comparison of two solutions
The search ends with a set of Pareto optimal solutions that belong to the bound-

ary beyond which neither the prediction error nor the complexity can be improved
without deteriorating the other objective. This can be formally defined in terms of a
dominance relation. Let U1 be the prediction error and U2 be the complexity metric.

Sa dominates Sb

≡
∀i ∈ {1, 2} : Ui(Sa) ≤ Ui(Sb) and ∃j ∈ {1, 2} s.t. Uj(Sa) < Uj(Sb)

Thus, the search returns a set of non-dominated solutions called the Pareto front.

3.3.7. Exploration by Pareto simulated annealing
Simulated annealing (SA) is an iterative local search process used to solve opti-

mization problems for which a simple hill-climbing approach would most often con-
verge on a poor local optimum. At each iteration, SA generates randomly a solution
Snew in the neighborhood of the current solution Scur. The probability P of accept-
ing Snew as the new current solution is a function of both a temperature parameter
T and the difference in cost ∆E between the two solutions.

P = e−∆E/T (3)
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Annealing Temperature T. SA mimics the physical process of annealing in metallurgy
where a material is first heated before being gradually cooled in order to reach an
equilibrium state with increased ductility and hardness. SA follows a similar two-steps
process.

The heating phase aims at discovering an initial temperature T0 that favors ex-
ploration over exploitation in the beginning of the search. The heating process starts
from a low temperature at which a deteriorating neighbour of the current solution is
rarely accepted. Then, every sh iterations, the temperature is increased according to
a geometric series of ratio λh > 1. The process ends at a temperature T0 at which at
least 90% of the randomly generated neighbours are accepted.

During the cooling phase, the annealing temperature is progressively decreased,
every sc iterations, according to a geometric series of ratio λc < 1. High temperatures
favor the exploration of the space of functional forms by preventing the process from
converging too early on a local optimum. On the contrary, the more the temperature
decreases, the less likely it is for a deteriorating neighbour to replace the current solu-
tion. The value of λc controls the speed at which the annealing temperature decreases.
If λc is too small, the optimization may stay stuck too early in the neighborhood of
a poor local optimum. Whereas, if λc is too close to 1, the optimization may take
too long to reach a good optimum. Moreover, parameter sc increases according to a
geometric series of ratio γc > 1. Thus, more iterations are allocated to lower tem-
peratures to favor the exploitation of promising functional forms. Finally, the search
ends when either the temperature falls below a threshold or the number of iterations
reaches a predefined maximum.

∆E and the acceptance of a new solution. For a single-objective optimization prob-
lem, ∆E is simply the difference of the objective function evaluated at two neighbour-
ing solutions. For our multi-objective optimization problem, we use the dominance-
based performance metric introduced above. When a new solution Snew dominates,
or is as good as, Scur, it is accepted as the new solution (see function accept of
algorithm 3). When Snew is less effective than Scur, it has a probability P defined
by eq. 3 to be accepted. In that case, ∆E is defined as:

∆E(Scur,Snew) =
1

|ζ̃|

(
|ζ̃Snew | − |ζ̃Scur |

)
(4)

with ζ the set of solutions that approximate the Pareto front, |ζ̃| the cardinality of
ζ∪{Scur,Snew}, and |ζ̃S | the number of solutions in |ζ̃| that dominate S (see Fig. 5).
Moreover, to smooth the estimated acceptance probability distribution, new artificial
points are added to the attainment surface to get an evenly spread attainment surface
over the two dimensions of the Pareto front (Smith et al., 2004).
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Figure 5: Example of an approximated Pareto front and its attainment surface, adapted from
(Stinstra et al., 2008, p. 322). From Eq. 4, ∆E(Scur,Snew) = (2− 4)/9 = −2/9

Finally, when Snew is accepted, the Pareto front ζ is updated (see function update
of algorithm 3) by removing the solutions dominated by Snew and then adding Snew

to ζ when it is not dominated by any other solution in ζ. Thus, at the end of each
iteration, ζ is the set of non-dominated solutions encountered during the search.

3.4. Automatic selection of a global model
In Section 5, where we illustrate the dynamic interpretative process made possible

by our framework, we emphasize the usefulness of being able to let the user choose a
predictive model on the Pareto front. In that way, the end user can precisely balance
between the predictive performance and the simplicity of the model. However, in our
proposed methodology, we also need a principled way to automatically select a model
on the Pareto front. To do this, first, we consider the point Ω in the Pareto plan that,
(i) on the performance axis, is at the level of the most efficient model encountered
and, (ii) on the complexity axis, is at the level of the simplest model encountered.
Then, we select the model Sglob on the Pareto front closest to Ω in the sense of the
Euclidean distance. This model, located in the elbow of the Pareto front, is likely to
offer a good trade-off between predictive performance and complexity. In the next
stage of our approach, it is used as a starting point to build cluster-specific models.

3.5. Cluster-specific models
To discover cluster-specific phenomena, for each cluster discovered by the approach

introduced in Section 3.2, a modified version of the symbolic regression search is
conducted. It consists in merging the functional form built from the expression trees
with the fixed functional form of Sglob (see Fig. 6): common terms are grouped
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Algorithm 3 Pseudocode of accept and update functions
1: function accept(perfnew, complnew, perfcurr, complcurr, ζ, T )
2: is_accepted← False
3: if perfnew ≤ perfcurr and complnew ≤ complcurr then
4: is_accepted← True ▷ new solution dominates, or is as good as, the

current one
5: else
6: compute P according to Eq. 3
7: draw randomly j in [0, 1]
8: if P ≥ j then
9: is_accepted← True

10: return is_accepted

11: function update(ζ,Mnew,Snew, perfnew, complnew)
12: is_dominated = False
13: for solution S in the Pareto front ζ do
14: if S dominates Snew then
15: is_dominated = True
16: if is_dominated = False then
17: remove solutions in ζ dominated by Snew

18: add Snew to ζ

19: return ζ,Mnew,Snew, perfnew, complnew

together and new terms are added to the formula. Hence, the marginal effects already
represented by Sglob can be reduced or amplified and new cluster-specific effects can
be discovered. It corresponds to a partial pooling approach where cluster-specific
models can benefit from the effects already discovered by the global model.

3.6. Uncertainty estimation
Our approach results in global and cluster-specific expansions of linear mod-

els. Therefore, the marginal effects of the terms composing the models are read-
ily interpretable. However, since the training set has been used to estimate the
l2-regularization hyper-parameters, there is no simple linear relationship between un-
certainty in the parameters and uncertainty in the target. Bootstrap techniques could
estimate the uncertainty in the parameters. Still, a standard bootstrap approach is
not appropriate since the bias introduced by the penalty term would not be correctly
estimated. Double bootstrap techniques have been proposed (Vinod, 1995; McCul-
lough and Vinod, 1998) to take into account an estimation of the bias. Nonetheless,
they are computationally expensive (O(n3) where n is the number of samples). Also,
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Figure 6: Extraction of a cluster-specific functional form from a set of expression trees and the fixed
functional form of the global model

asymptotic statistics have been derived to measure the uncertainty in the parame-
ters under a fixed setting of the regularization parameter (Firinguetti and Bobadilla,
2011). They wouldn’t be appropriate in our case since we estimate the regularization
parameter by leave-one-out cross-validation. Therefore, we make use of a well-known
equivalence (Mehta et al., 2019) between the ridge regression regularization param-
eter and the parameters of a Gaussian prior for the Bayesian formulation of linear
regression. It can be shown that the variance τ 2 of the zero-centered Gaussian prior
must be defined as:

τ 2 ≡ σ2

λ

where λ is the ridge regularization parameter and σ2 is the variance of the likelihood
that can be estimated by measuring the variance of the target on the training dataset.
For each Pareto optimal solution, we start from the discovered functional form and
the value of the ridge regularization hyper-parameter λ to infer again the coefficients,
but this time, using Bayesian inference with the above prior. The resulting posterior
distributions give an estimate of the parameters’ uncertainty.

4. Experiments

4.1. Datasets and preprocessing
We test our framework on a highway network dataset (further referred to as French

Highway). The task is to predict yearly crash counts on 10 km long highway segments
of a french highway network (2300 km). The predictors include topographical data
(number of lanes, right shoulder width...), average annual daily traffic (AADT), speed
limits and average altitudes. The dataset covers 11 years of data, from January 1st,
2008 to December 31th, 2018.
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Dataset #Instances #Features dependent variable
French Highway 4152 11 crash count
Insurance (Lantz, 2013) 1338 7 health insurance costs
Airbnb (Airbnb, 2019) 48895 12 housing prices
House (218_house_8L)∗ 22784 8 -
Puma (225_puma8NH)∗ 8192 8 -
Satellite (294_satellite_image)∗ 6435 36 -
Wind (503_wind)∗ 6574 14 -
Breast tumor (1201_BNG_breastTumor)∗ 116640 9 -
Music (4544_GeographicalOriginalofMusic)∗ 1059 117 -
Wine† 4898 12 white wine quality
Toxicity† 546 9 aquatic toxicity
Gas† 36733 11 gas emission
∗ Datasets taken from https://epistasislab.github.io/pmlb/index.html
† Datasets taken from https://archive.ics.uci.edu/ml/index.php

Table 3: Datasets

We also test our framework on 11 public regression datasets (see Table 3) from
different domains and with various volumes (from 546 to 116640 instances) and di-
mensionalities (from 7 to 117 features).

For preprocessing, categorical variables are one-hot-encoded and continuous vari-
ables are standardized.

4.2. Performance metric
To measure the performance of predictive models, we use the Root Mean Square

Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

with n the number of observations, yi the target and ŷi the predicted value.

4.3. Implementation details
We implement our model in Python. In order to converge towards interpretable

models, we restrict the operators available to the symbolic regression to {left , right , ln}
for the unary ones, and {×,+,−} for the binary ones. For the algebraic simplifica-
tion of the expression trees by, e.g., grouping common terms together (see function
simplify in algorithm 2), we use a module2 from the Sympy library.

2https://docs.sympy.org/latest/modules/simplify/simplify.html
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To fit the coefficients of a newly discovered functional form, we use the scikit-
learn3 implementations of ridge regression. The optimal coefficients of the linear
models are computed with l2-regularized least squares. Indeed, with the introduction
of a weight decay, better generalization performances can usually be achieved and
the models are less prone to the negative effects of multicollinearities. We optimize
the l2-regularization parameter by an efficient form of leave-one-out cross-validation
(viz., generalized cross validation).

As explained in Section 3.6, in order to endow our final models with uncertainty
estimates, we use Bayesian inference to compute the posteriors for the coefficients of
each functional form on the Pareto front. We apply gaussian priors corresponding
to the already known optimal value of the regularization hyper-parameter (see Sec-
tion 3.6). We rely on the pymc34 library with the No U-Turn Sampler (Hoffman et al.,
2014) to run simultaneously two Markov chains for 3000 iterations, with a burn-in
period of 1000 iterations.

4.4. Preliminary search for Symbolic Regression’s hyper-parameters
On the French Highway and Insurance datasets, we conduct a grid-search for the

symbolic regression’s hyper-parameters (viz. the number of expression trees and the
depth of a tree). We observe that deeper trees lead to more complex models. This
is mainly due to the possibility of deep compositions of functions. Thus, motivated
by finding a good compromise between the complexity of the final models and their
predictive performance, we restrict the tree depth to 4. In this way, each expression
tree, being a perfect binary tree, has 8 leaves. Furthermore, the grid-search also
reveals that there is no noticeable improvement in predictive performance when the
number of expression trees exceeds two-thirds of the number of features after data
preparation (viz., one hot encoding). The number of trees used for each dataset is
given in Table 5.

4.5. Models used for comparison
We compare our proposal to models of varying degrees of interpretability. Among

the most simple and interpretable models, we select the scikit-learn implementa-
tions of ordinary least square regression (OLS ) and decision trees of depth no more
than 5 (to preserve interpretability).

We also compare our current approach to a previous proposal of ours, a Bayesian
hierarchical GLM (BH-GLM ) (Veran et al., 2020). The latter is based on the bayesian
inference of a linear hierarchical model with data-driven discovery of objective pri-
ors in the form of i) a hierarchical structure and ii) strong first-order interactions.

3https://scikit-learn.org/stable/
4https://docs.pymc.io/en/v3/
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The hierarchical structure is learned by the same method as the one introduced in
Section 3.2. The retained strong first-order interactions are obtained through the
analysis of the structure of a trained self-adaptive polynomial network. We also con-
sider B-GLM, a variant with first-order interactions that does not account for the
hierarchical structure.

Moreover, we include two variants of Generalized Additive Models (GAM). For the
first one, GAM-splines, based on a spline basis, we use the PyGAM5 implementation.
For the second one, explainable boosting machine (EBM ), based on gradient boosting
with bagging, we use the implementation provided by the InterpretML framework
(Nori et al., 2019).

We also compare our approach to genetic programming based symbolic regres-
sions with the reference implementations of the gplearn6 package (SR-GP) and GP-
GOMEA7 (SR-Gomea) (Virgolin et al., 2021), the latter being known to perform well
on many real world datasets (La Cava et al., 2021). For both implementations, the
set of operators is restricted to the one we use in our approach (viz., {+,−,×, ln}).
We also consider SR-Gomea-op, the same model with a less restricted set of operators
(viz., {+,−,×, ln, cos , sin,

√
}), the same as the one used by (La Cava et al., 2021)

in their recent survey.
For all the aforementioned interpretable models, we apply a no pooling approach

that accounts for the clusters discovered by our Hierarchical structure module (see
Section 3.2). This approach fits a separate model for each cluster and considers that
no similarities exist between them.

Finally, we select three highly flexible black box models: (i) the scikit-learn
implementation of Support Vector Machines (SVM) and (ii) Multilayer Perceptrons
(MLP), and (iii) the XGBoost gradient tree boosting library.

For fair comparisons, the hyper-parameters of the aforementioned models are op-
timized by cross-validation with grid-search. For each model, the grid of hyper-
parameters’ values are given in Appendix A.

For the experiments, we consider several variants of our framework. SR-trad and
SR-max use only the global model of Section 3.4 while HSR-trad and HSR-max use
the cluster-specific models of Section 3.5 (prefix “H” stands for hierarchical). We also
train our hierarchical symbolic regression on clusters discovered with a hierarchical ag-
glomerating clustering applied to the training data, including the dependent variable.
These models are further referred to as HSR-naive-trad and HSR-naive-max. Finally,
SR-NP-trad and SR-NP-max are cluster-specific models learned with a no pooling

5https://pygam.readthedocs.io/en/latest/
6https://gplearn.readthedocs.io/en/stable/
7https://github.com/marcovirgolin/GP-GOMEA
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Dataset #clusters f1 (std)
French Highway 4 0.995 (0.003)
Insurance 2 1.0 (0.0)
Airbnb 4 0.985 (0.005)
House 4 0.908 (0.026)
Puma 3 0.975 (0.013)
Satellite 3 0.964 (0.003)
Wind 3 0.944 (0.022)
Breast tumor 2 0.995 (0.004)
Music 3 0.96 (0.029)
Wine 3 0.957 (0.012)
Toxicity 2 0.95 (0.039)
Gas 2 0.99 (0.003)

Table 4: For each dataset: number of clusters selected and performance of the prediction to associate
a new observation to its cluster

approach, meaning that they do not include the knowledge of the global model. The
suffixes trad and max are used to distinguish models selected near the elbow of the
Pareto front, that should have a good trade-off (whence trad) between complexity
and predictive performance, from models of maximum complexity (whence max ).

Results, averaged from a 5-fold cross-validation, are reported in Table 5 and Ta-
ble 6, the latter for cluster-specific interpretable models trained with a no pooling
approach.

4.6. Hierarchical structure module
For each dataset, the optimal number of clusters computed in the Hierarchical

structure module is given in Table 4. Moreover, to validate the ability of this module
to associate an unknown sample to a cluster, a train-test split approach is applied on
each training subset of the 5-fold cross-validation. For each training subset, the deci-
sion tree classifier is trained, on 80% of the data, to predict, based on the explanatory
variables, the cluster to which a new observation belongs. A f1-score is computed
on the remaining 20% of each training subset. The decision tree classifier is highly
accurate on all datasets (see Table 4).

4.7. Results
HSR-trad, the model that, according to our approach, should offer a good trade-off

between performance and complexity, obtains better RMSE than OLS and decision
tree on all datasets but Insurance and Music. As expected, HSR-max, the most
complex model resulting from our approach, obtains better RMSE than HSR-trad,
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except for the Insurance dataset where they obtain similar predictive performance.
Moreover, the fact that our models have performance metrics with low standard
deviations testifies to their robustness. Indeed, they are likely to discover similar
solutions on similar datasets.

Our approach based on hierarchical symbolic regression is more efficient than B-
GLM and BH-GLM. This can be explained by the flexibility of our approach that
captures a greater variety of sources of nonlinearities and interactions between ex-
planatory variables.

SR-GP, the symbolic regression based on genetic programming, obtains poor re-
sults and is even dominated by the fully interpretable models on all datasets. The
more recent approach SR-Gomea obtains better predictive performance than SR-GP
but is still dominated by HSR-trad and HSR-max. SR-Gomea-op does not highlight
significant predictive gains compared to SR-Gomea on most datasets. This validates
that restricting the operators makes it possible to obtain interpretable functional
forms with more than satisfactory predictive performance on real world datasets.

HSR-trad and HSR-max, the cluster-specific models, often show a clear improve-
ment when compared to the global models SR-trad and SR-max. The partial pooling
approach has a clear interest given that HSR-trad and HSR-max outperform SR-
NP-trad and SR-NP-max, their no pooling variants. This can be explained by the
fact that, in the no pooling case, models are trained independently on cluster data,
which results in a higher risk of overfitting (Gelman and Hill, 2006). In our partial
pooling approach, we use a global model as an initial seed in order to tend to increase
the bias and decrease the variance of the final cluster-specific models, thus reducing
the risk of overfitting and improving the predictive performances. Moreover, we also
observe that incorporating the data-driven discovery of a hierarchical structure not
only provides better predictive performances, it also offers better interpretability by
capturing cluster-specific phenomena (see Section 5).

Our approach for discovering a hierarchical structure is robust, efficient and obtain
better results on all datasets compared to the approach that considers more naive
clusters. Indeed, on all datasets, HSR-trad and HSR-max are substantially better
than HSR-naive-trad and HSR-naive-max (see Table 7).

HSR-max and GAM-splines have similar performances on all datasets but the
Insurance dataset where HSR-max discovers a significant interaction between the
body mass index and being a smoker. However, the no pooling variant of GAM-
splines is slightly better than HSR-max on the Insurance dataset. Finally, EBM
performs well on all datasets. It obtains the best performances on the Insurance and
Gas datasets and is similar, if not better, to XGBoost on the French Highway, Airbnb,
and Wine datasets.
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RMSE (std)
French Highway (8 a) Insurance (6) Airbnb (12) Puma (6) Satellite (24) Wind (9)

Local 5.052 (0.250) - - - - -
OLS 6.213 (0.496) 6077 (287) 0.50 (0.011) 4.471 (0.068) 1.213 (0.009) 3.289 (0.104)
Decision tree 6.134 (0.422) 4739 (324) 0.490 (0.011) 3.688 (0.05) 1.061 (0.022) 3.839 (0.112)
GAM-splines 5.80 (0.344) 6021 (299) 0.464 (0.011) 4.236 (0.065) 0.90 (0.009) 3.082 (0.084)
EBM 5.363 (0.233) 4533 (339) 0.450 (0.013) 3.283 (0.049) 0.851 (0.035) 3.140 (0.089)
SR-GP 8.06 (0.730) 5168 (360) 0.563 (0.026) 4.504 (0.086) 1.628 (0.438) 3.858 (0.216)
SR-Gomea 6.309 (0.303) 4885 (251) 0.502 (0.010) 0 3.362 (0.033) 1.164 (0.028) 3.306 (0.128)
SR-Gomea-op 6.297 (0.267) 4815 (250) 0.514 (0.01) 3.238 (0.059) 1.102 (0.032) 3.296 (0.101)
B-GLM 6.356 (0.513) 5151 (293) 0.497 (0.01) 4.282 (0.065) 1.117 (0.044) 3.295 (0.098)
BH-GLM 6.004 (0.46) 4925 (301) 0.474 (0.02) 3.871 (0.13) 0.952 (0.029) 3.291 (0.106)
XGBoost 5.571 (0.377) 4667 (346) 0.440 (0.011) 3.257 (0.056) 0.667 (0.033) 3.084 (0.075)
SVM 6.310 (0.645) 4953 (272) 0.503 (0.011) 4.493 (0.089) 1.261 (0.028) 3.307 (0.102)
MLP 6.140 (0.462) 4867 (347) 0.463 (0.013) 3.170 (0.052) 0.789 (0.047) 3.076 (0.087)

SR-trad 6.258 (0.509) 5219 (330) 0.510 (0.018) 3.961 (0.031) 1.175 (0.05) 3.342 (0.104)
SR-max 6.186 (0.469) 4889 (293) 0.507 (0.011) 3.528 (0.042) 1.018 (0.04) 3.176 (0.081)
HSR-trad 5.921 (0.54) 4840 (308) 0.475 (0.012) 3.30 (0.084) 0.95 (0.034) 3.205 (0.074)
HSR-max 5.80 (0.507) 4844 (304) 0.470 (0.011) 3.277 (0.082) 0.934 (0.056) 3.198 (0.074)

Breast tumor (6) Music (78) House (5) Wine (8) Toxicity (6) Gas (7)
OLS 10.023 (0.036) 0.465 (0.039) 41563 (1270) 0.754 (0.02) 1.256 (0.097) 8.112 (0.133)
Decision tree 9.844 (0.039) 0.705 (0.066) 35752 (1199) 0.753 (0.015) 1.394 (0.12) 7.705 (0.127)
GAM-splines 9.663 (0.047) 0.898 (0.101) 33460 (1405) 0.728 (0.029) 1.245 (0.106) 5.993 (0.10)
EBM 9.519 (0.049) 0.60 (0.036) 31062 (1192) 0.689 (0.019) 1.20 (0.095) 5.476 (0.072)
SR-GP 10.441 (0.277) 0.71 (0.154) 56615 (21299) 0.857 (0.068) 1.457 (0.264) 10.75 (1.107)
SR-Gomea 9.988 (0.056) 0.523 (0.081) 36750 (1693) 0.742 (0.022) 1.343 (0.189) 8.703 (0.144)
SR-Gomea-op 9.973 (0.049) 0.499 (0.036) 36865 (1434) 0.739 (0.021) 1.267 (0.116) 8.742 (0.278)
B-GLM 9.995 (0.034) 0.469 (0.045) 39811 (1375) 0.751 (0.019) 1.246 (0.089) 8.112 (0.137)
BH-GLM 9.751 (0.036) 0.467 (0.037) 35039 (1820) 0.737 (0.017) 1.237 (0.098) 6.87 (0.282)
XGBoost 9.435 (0.048) 0.507 (0.046) 29630 (1237) 0.68 (0.014) 1.157 (0.129) 5.705 (0.190)
SVM 10.045 (0.036) 0.472 (0.042) 44879 (1676) 0.748 (0.018) 1.286 (0.195) 6.954 (0.372)
MLP 9.67 (0.04) 0.498 (0.042) 36004 (851) 0.757 (0.071) 1.280 (0.153) 6.023 (0.239)

SR-trad 10.096 (0.064) 0.543 (0.081) 37412 (2150) 0.744 (0.024) 1.253 (0.089) 8.153 (0.686)
SR-max 10.03 (0.079) 0.476 (0.045) 34716 (2049) 0.731 (0.019) 1.233 (0.106) 7.395 (0.553)
HSR-trad 9.727 (0.056) 0.497 (0.05) 33542 (1127) 0.724 (0.019) 1.243 (0.097) 7.181 (0.618)
HSR-max 9.662 (0.061) 0.471 (0.053) 33102 (833) 0.712 (0.014) 1.214 (0.065) 6.421 (0.150)
a number of trees for SR-* and HSR-* models
b averages and standard deviations of the performance metric obtained on 5-fold cross-validation

Table 5: Results obtained on 12 regression datasets
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RMSE (std)
French Highway Insurance Airbnb Puma Satellite Wind

OLS 6.05 (0.45) 4971 (293) 0.484 (0.01) 3.867 (0.127) 1.101 (0.053) 3.291 (0.094)
GAM-splines 5.747 (0.467) 4913 (346) 0.751 (0.649) 3.523 (0.076) 0.899 (0.042) 3.108 (0.087)
EBM 5.18 (0.275) 4512 (354) 0.444 (0.012) 3.320 (0.057) 0.874 (0.03) 3.200 (0.055)
SR-GP 6.165 (0.555) 5795 (691) 0.512 (0.015) 3.975 (0.178) 1.209 (0.096) 3.678 (0.099)
SR-Gomea 5.998 (0.257) 4872 (252) 0.478 (0.011) 3.273 (0.078) 1.025 (0.052) 3.283 (0.071)
SR-Gomea-op 5.959 (0.143) 4625 (307) 0.477 (0.009) 3.217 (0.072) 0.991 (0.058) 3.287 (0.091)
BGLM 6.02 (0.47) 4872 (299) 0.484 (0.01) 3.547 (0.092) 0.986 (0.036) 3.287 (0.099)

SR-NP-trad 6.006 (0.473) 4842 (290) 0.489 (0.019) 3.536 (0.087) 0.975 (0.036) 3.312 (0.073)
SR-NP-max 6.043 (0.617) 4844 (318) 0.483 (0.011) 3.386 (0.063) 0.953 (0.069) 3.278 (0.063)

Breast tumor Music House Wine Toxicity Gas
OLS 9.8 (0.123) 1.028 (0.458) 35162 (1651) 0.736 (0.017) 1.264 (0.109) 7.169 (0.281)
GAM-splines 9.62 (0.067) 0.827 (0.031) 32633 (1111) 0.729 (0.019) 1.293 (0.168) 5.671 (0.168)
EBM 9.493 (0.057) 0.613 (0.058) 31298 (944) 0.683 (0.019) 1.207 (0.114) 5.423 (0.119)
SR-GP 10.242 (0.286) 0.762 (0.076) 49985 (7436) 0.807 (0.021) 1.395 (0.27) 9.966 (1.797)
SR-Gomea 9.798 (0.098) 0.624 (0.079) 33156 (863) 0.729 (0.017) 1.238 (0.066) 7.614 (0.205)
SR-Gomea-op 9.798 (0.103) 0.584 (0.06) 33091 (943) 0.734 (0.016) 1.273 (0.117) 7.747 (0.338)
B-GLM 9.798 (0.064) 0.721 (0.065) 40835 (1380) 0.739 (0.021) 1.293 (0.129) 6.47 (0.152)

SR-NP-trad 9.865 (0.141) 0.550 (0.038) 33922 (1158) 0.73 (0.019) 1.326 (0.125) 7.549 (0.515)
SR-NP-max 9.8 (0.117) 0.564 (0.059) 34021 (1251) 0.724 (0.018) 1.347 (0.199) 7.296 (0.728)

Table 6: Results obtained by cluster-specific interpretable models

RMSE (std)
French Highway Insurance Airbnb Puma Satellite Wind

SR-NP-naive-trad 6.446 (0.42) 6751 (521) 0.552 (0.017) 4.338 (0.229) 1.025 (0.04) 3.675 (0.139)
SR-NP-naive-max 6.377 (0.454) 6550 (365) 0.554 (0.036) 4.266 (0.18) 1.035 (0.148) 3.608 (0.079)
HSR-naive-trad 6.472 (0.462) 6429 (307) 0.584 (0.067) 4.156 (0.184) 1.012 (0.064) 3.547 (0.041)
HSR-naive-max 6.386 (0.473) 6328 (307) 0.545 (0.018) 4.062 (0.078) 0.991 (0.034) 3.562 (0.068)

SR-NP-trad 6.006 (0.473) 4842 (290) 0.489 (0.019) 3.536 (0.087) 0.975 (0.036) 3.312 (0.073)
SR-NP-max 6.043 (0.617) 4844 (318) 0.483 (0.011) 3.386 (0.063) 0.953 (0.069) 3.278 (0.063)
HSR-trad 5.921 (0.54) 4840 (308) 0.475 (0.012) 3.30 (0.084) 0.95 (0.034) 3.205 (0.074)
HSR-max 5.80 (0.507) 4844 (304) 0.470 (0.011) 3.277 (0.082) 0.934 (0.056) 3.198 (0.074)

Breast tumor Music House Wine Toxicity Gas
SR-NP-naive-trad 12.0 (0.161) 0.549 (0.05) 38810 (1892) 0.734 (0.027) 1.345 (0.173) 7.873 (1.55)
SR-NP-naive-max 11.953 (0.149) 0.576 (0.102) 38260 (1531) 0.723 (0.016) 1.262 (0.096) 7.105 (0.906)
HSR-naive-trad 11.932 (0.16) 0.524 (0.045) 37518 (1563) 0.735 (0.021) 1.363 (0.112) 7.46 (0.708)
HSR-naive-max 11.915 (0.108) 0.507 (0.056) 37640 (1741) 0.725 (0.019) 1.266 (0.071) 6.621 (0.15)

SR-NP-trad 9.865 (0.141) 0.550 (0.038) 33922 (1158) 0.73 (0.019) 1.326 (0.125) 7.549 (0.515)
SR-NP-max 9.8 (0.117) 0.564 (0.059) 34021 (1251) 0.724 (0.018) 1.347 (0.199) 7.296 (0.728)
HSR-trad 9.727 (0.056) 0.497 (0.05) 33542 (1127) 0.724 (0.019) 1.243 (0.097) 7.181 (0.618)
HSR-max 9.662 (0.061) 0.471 (0.053) 33102 (833) 0.712 (0.014) 1.214 (0.065) 6.421 (0.150)

Table 7: Comparison of two clustering strategies for the no pooling and partial pooling approaches: a
naive one based on the original features versus the one based on the SHAP features (see Section 3.2)
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4.8. Discussion
Confirming previous studies (Lou et al., 2012; Caruana et al., 2015), we observe

that EBM, as a variant of GAM, is very efficient on all datasets. Moreover, this model
meets many of the expected criteria for interpretability enumerated in (Arrieta et al.,
2020). However, it also has limitations that can make it unsuitable for safety-critical
systems. First, different optimization strategies adopted to learn an EBM model,
can lead to different interpretations of its predictions (Chang et al., 2021). However,
for safety-critical systems, trust in the identification of the main risk factors is re-
quired by experts when they elaborate remedial actions. Moreover, for satisfactory
interpretability, it helps if a GAM has a small number of components and if each
component function is relatively smooth. However, EBM, due to their reliance on
boosted trees, can hardly maintain these constraints (Rudin et al., 2022). With our
approach, field experts are more likely to be confident in models with cluster-specific
behaviors and stable functional forms that highlight a selection of relevant factors
and their interactions.

Furthermore, for the French Highway dataset, as already observed in (Veran et al.,
2020), the best known strategy to estimate the number of crash counts is to average,
for each highway network segment, the number of accidents that occurred in previous
years (c.f., the Local model in Table 5). However, such a model does not offer much
insight about the associations between crash counts and risk factors. We observed that
flexible models, such as EBM, are able to approach in performance the local model
by discovering quasi-identifiers of road segments. For example, an EBM discovers
a complex nonlinear relationship between the altitude and the number of accidents,
see Fig. 7. Accidents appear more likely for the lowest altitudes. However, this
phenomenon should not be interpreted as a potential risk factor linked to the altitude.
In fact, the model is using the altitude as a proxy variable to identify a group of
nearby road segments. Therefore, in that particular context, EBM, despite its good
predictive performance, does not always provide relevant information to field experts.
It can even, at times, mislead them.

5. Dynamic interpretative process

5.1. Introduction
Although plots like the one of Fig. 7 make it possible to identify potentially mis-

leading models’ behaviors, the EBM model does not provide alternative associations
between the explanatory variables and the target. With our approach, the risk of
misinterpretation is reduced thanks to the successive models on the Pareto front:
from less complex, which capture only overall effects, to most complex, which are
flexible enough to focus on hazardous configurations specific to a few roadway seg-
ments. Through such a dynamic interpretative process, field experts can use the
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Figure 7: Global explanation plot provided by the InterpretML framework for an EBM model on
the altitude variable on the French Highway dataset

Figure 8: Pareto front for the selected cluster.

model best suited to meet their needs. In the next section, we illustrate this process
on the French Highway dataset, supported by a graphical user interface developed in
dialogue with field experts (see Appendix B). We suppose that our framework has
already been trained on ten years of data, from January 1st, 2008 to December 31th,
2017. Data from 2018 is used to validate that, based on out-of-sample predictions,
the framework provides useful information to safety experts. The first module of our
framework, described in Section 3.2, identified four relevant clusters. For illustrative
purposes, we focus on a moderately hazardous cluster, composed mainly of rural and
mountainous segments.

5.2. From global to cluster-specific effects: an illustrative example
Safety experts can navigate within the series of cluster-specific models that make

up the Pareto front (see Fig. 8), from the least complex one (viz. model 1) to the
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(a) Model 1 (b) Model 2

Figure 9: Crash count predictions for 2018 on roadway segments belonging to the selected cluster.

most complex one (viz. model 4). Model 1 corresponds to the functional form of the
global model (Section 3.4) whose coefficients are inferred based on cluster 0 data.

model 1: ŷ = 5.95 + 0.000394x3 + 0.312x10 + 2.7x2

with ŷ being the predicted crash count, x3 the average annual daily traffic, x10 the
presence of bridges (binary) and x2 the number of rest areas. From the effects plots
of Fig. 10a, it appears that, for this model, the amount of traffic and the number of
rest areas have the more prominent marginal effects.

Model 1 captures only the global risk factors. When considering models of increas-
ing complexity, more specific effects will appear. For instance, model 2 (see Fig. 8) is
defined as:

model 2: ŷ = 3.34 + 0.000555x3 + 2.34x2 + 1.43x1 + 0.055x10 + 0.117x0x8

where the additional variables x0, x1 and x8 are, respectively, the speed limit, the
number of interchanges and the presence of tunnels. Out-of-sample predictions from
models 1 and 2 differ locally (see Fig 9a and Fig 9b). In particular, in mountainous
areas, segments considered as moderately hazardous by the first model, are now
associated with a high risk of accidents due to the discovery of a first-order interaction
between the presence of tunnel and the speed limit. Safety experts, by combining prior
knowledge of the network with the observed transition from model 1 to model 2,
are confident that this interaction is one of the main reasons why a large number
of accidents have occurred on these segments during the ten years covered by the
training data. This discovery may support a proposal for reducing the authorized
speed limit on these specific segments.
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(a) model 1 (b) model 2

(c) model 3 (d) model 4

Figure 10: Effects plots for the four selected models. Effects plots are obtained by computing for
all observations the effect of a variable j on the crash count, defined by effect(i)j = βjx

(i)
j , where βj

is the coefficient estimate of the j-th variable of the model and x
(i)
j is the value of variable j on the

i-th observation (Molnar, 2020).

Nonetheless, one of the major difficulties for the interpretation of more complex
models is related to the introduction of collinearities and interactions between con-
tinuous variables. To illustrate this, consider model 3 from Fig. 8:

Model 3: ŷ = −33.3− 0.00489x10 + 1.57x2 − 9.37 · 10−6x3x6 + 0.00286x3 + 0.15x6

Model 3 is characterized by an interaction between the averaged altitude x6 and
the traffic x3. By focusing on this interaction, model 3 better fits training data than
model 2 but its effects plots (see Fig 10c) are arguably more difficult to interpret. How-
ever, our framework only produces differentiable closed-form expressions for which it
is always possible to compute the partial analytical derivatives (PD) w.r.t. variables
of interest, to quantify explicitly their partial effects (i.e., a measure of the conditional
effect of a variable on the target) (Aldeia and de França, 2021). In this sense, we
can understand how a unit change in an explanatory variable affects the crash count
when other variables are held constant. For instance, the partial derivatives for the
trafic x3 and altitude x6 are respectively:

PD(x3) =
δŷ

δx3

= 0.00286− 9.37 · 10−6x6, PD(x6) =
δŷ

δx6

= 0.15− 9.37 · 10−6x3

Histograms of the pointwise partial derivatives can be useful interpretative tools (see
Fig. 11). Although the partial effects of the traffic x3 are mostly positive, a few are
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(a) PD(x3) (b) PD(x6)

Figure 11: Histograms of partial derivatives for (a) the traffic x3 and (b) the altitude x6, for model 3.

x3 x6

overall PD(x3) < −0.0015 overall PD(x3) < −0.0015
count 1491 64 1491 64
mean 10001 12206 274 579
std 1465 997 105 32
min 7685 10877 79 521
max 14658 14658 616 616

Table 8: Description of explanatory variables for the overall cluster-specific data and for samples
where partial derivatives w.r.t. x3 are the lowest.

negative for segments of high altitudes and above average traffic (see Table 8). Thus,
these variations in partial derivatives emphasize that the relation between the crash
count and x3 is more complex than the linear dependency proposed by model 1 and
model 2. By introducing this novel interaction, model 3 manages to capture more
variability in the dependent variable than the previous models.

Finally, model 4 is much more complex:

Model 4: ŷ = − 34.7 + 8.5 · 10−6x2
1 − 0.000671x1x3 − 8.5 · 10−6x1x6 + 13.5x1

+ 0.0113x10 + 1.92x2 − 8.5 · 10−6x3x6 + 0.000679x3x8 + 0.00269x3

− 0.0276x4 + 1.61x5 + 0.133x6 + 0.12x7 − 0.276x8 + 0.0472x9

As we can see from Fig. 10d, the introduction of new correlated terms improves slightly
the fit. To capture extra variability in the dependent variable, model 4 introduces
highly correlated combinations of terms. From model 3 to model 4, a sharp increase
in complexity for a small gain in performance should alert the user to the risk of no
longer understanding the inner workings of model 4: time must be spent at studying
the various partial effects before deciding if the model can still be trusted.
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5.3. Specificities and benefits of the ranking-by-complexity approach
Thanks to our complexity metric (see Eq. 2), model 3 does not dominate model 2

even though they have the same number of terms and their terms have equal com-
plexities. If we had not penalize collinearities, then model 2, which is of high interest
to field experts, would not have been included in the Pareto front. In this sense, the
ranking-by-complexity favors a progressive analysis of numerous instructive models.

Among Fig. 8 models, some can attain similar predictive performances while bring-
ing out different effects of the explanatory variables. This can be understood from the
point of view of the Rashomon effect (Breiman, 2001) which characterizes problems
where many accurate-but-different models exist to describe the same data (Semenova
et al., 2019). As discussed by (Rudin, 2019), we argue that the availability of multi-
ple efficient predictive models is useful since field experts may have more flexibility
in choosing a model that they find interpretable. Moreover, we help them in this
process as our definition of the complexity warns them when models are likely to be
difficult to understand.

Finally, the dynamic interpretative process can be a useful tool to construct new
handmade predictive models, based on the knowledge learnt by analyzing the Pareto
optimal models. For instance, we have seen that the interactions introduced in
model 2 and model 3 are both valuable. The user could consider building a new
model with both of them.

5.4. Towards causality
A central question remains: among these different models, how can be distin-

guished the trustworthy ones from the ones based on spurious associations due to
inductive bias? As illustrated above, one way is to rely on the diligence of the user
equipped with expert knowledge and effective tools. This could also be partially au-
tomated when prior knowledge of the conditional independences between variables
is formalized, e.g., as a causal graph (Pearl, 2009). Such approaches are beyond the
scope of our current work. However, our framework fosters a dynamic interpretative
process that, combined with a clear quantification of uncertainty, is a useful tool to
identify variables of interest and to understand how they interact. Therefore, we can
surmise that our framework could facilitate the development of causal models.

6. Conclusion

Predictive models are being used increasingly to make high stake decisions. For
many applications, there is a need for both accuracy and interpretability. For instance,
in highway safety analysis, we argue that a preference should be given to predictive
models that are both accurate and fully interpretable in order to increase the con-
fidence of safety experts in the identification of hazardous segments. Motivated by
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these requirements, we propose an interpretable symbolic regression framework that
first discovers a hierarchical structure in the data, and then learns global and cluster-
specific models by means of a multi-objective simulated-annealing-based symbolic
regression. More specifically, we first train a state-of-the-art non-parametric machine
learning model and then compute for each observation the Shapley values of the ex-
planatory variables. Based on the similarity induced by these Shapley values, we use
an agglomerative clustering algorithm to partition the dataset. Moreover, through
an original multi-objective symbolic regression, we compute a Pareto front of global
predictive models. We select among these models the one offering a good trade-off
between its predictive performance and its complexity. Afterwards, for each cluster
of the previously discovered hierarchical structure, the global model is used as the
starting seed for a new multi-objective symbolic regression. Finally, the best mod-
els, i.e. the ones appearing on the Pareto fronts, are re-estimated through Bayesian
inference in order to associate uncertainty estimates to their coefficients.

On twelve regression datasets, the framework outperforms most interpretable
models. On some datasets, we achieve performance comparable to that of non-
parametric black box models. Furthermore, we presented a case study based on the
highway network dataset to validate the new dynamic interpretative process made
possible by our framework. As our approach discovers transparent and parsimonious
symbolic models, safety experts can be more confident in their understanding of the
relations between the explanatory variables and the dependent variable. Moreover,
thanks to Bayesian inference, the risk factors are associated with measures of un-
certainty. In addition, the use of Pareto optimization allows field experts to build a
multi-scale view of the risk factors, from the most general to the most specific.

Our framework relies on a specific approach to discover a hierarchical structure.
Even though we validated its robustness on numerous datasets, promising next steps
involve analyzing other methods that are compatible with ours. For instance, in (Ren-
gasamy et al., 2021b,a), the authors propose an efficient ensemble feature importance
method where multiple feature importance approaches are applied to a set of ML
models and their crisp importance values are combined to produce a final importance
for each feature. Thus, we will constitute a benchmark of feature importance methods
(Arrieta et al., 2020) and evaluate them based on their efficiency, scalability, and on
the quality of computed clusters.

Finally, future work will extend the framework for near real-time crash risk as-
sessment. In this context, since remedial actions will probably affect humans’ lives
even more directly, having both efficient and interpretable models will be all the more
important to assist safety experts in their work.
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Appendix A. Hyper-parameters tuning

Model Hyper-parameters Values
GAM-splines lam {0.001, 0.01, 0.1, 1, 10, 100, 1000}

EBM max_bins {8, 16, 32, 64, 128, 256, 512, 1024}
min_samples_leaf {1, 2, 5, 10, 20}

SR-GP population_size {500, 1000, 1500}
generations {20, 50, 100}

SR-Gomea initmaxtreeheight {4, 6}
popsize {500, 1000}

XGBoost learning_rate {0.0001, 0.001, 0.01, 0.1}
max_depth {2, 3, 5, 10, 15}
min_child_weight {1, 3, 5, 7}
gamma {0, 0.5, 1, 1.5, 2, 5}
col_sample_by_tree {0.3, 0.4, 0.5, 0.7, 1}

SVM C {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}
kernel {linear, poly, rbf}
tol {0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}

MLP hidden_layer_sizes {(16, 16), (16, 8), (8, 8)}
alpha {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}
activation {tanh, relu}
learning_rate_init {0.0001, 0.001, 0.01, 0.1}
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Appendix B. Data visualization tool
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