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Abstract—Worldwide, highway accidents have important social
and financial impacts. Crash Predictions Models (CPM) are used
to reduce their frequency and gravity. They belong to two main
categories: generalized linear models (GLM) and nonparametric
machine learning (ML) algorithms. Broadly speaking, the former
offer better interpretability but tend to have worse predictive per-
formances than the latter. However, for highway infrastructures
managers, efficient predictions of accident count must come with
explanations so as to give rise to efficient safety actions. Therefore,
to balance predictive power and interpretability, we propose a
methodology that combines Bayesian learning of hierarchical
GLM with automatic detection of latent structures and inter-
actions through methods borrowed from the field of explainable
artificial intelligence (XAI). Promising results are obtained with
experiments conducted on crash count data from 2008 to 2017
on a large part of the french highway network. Moreover, we
tested our approach on three public datasets covering a broad
variety of contexts in terms of volume, data types and tasks (viz.
classification and regression). These experiments confirm that our
framework outperforms traditional GLM models while getting
close to the best ML models and remaining interpretable.

Index Terms—Machine Learning, model interpretability,
SHAP, Bayesian hierarchical modeling

I. INTRODUCTION

According to the World Health Organization [1], approxi-
mately 1.35 million people are killed each year on roadways
around the world. Related expenses average 3% of the gross
domestic product (GDP) of a country. As stated by the French
Road Safety Observatory [2], these costs grow exponentially
with the severity of the accidents. In 2018, a Property Damage
Only (PDO) accident incurred expenses up to 5 154 euros
while the average cost of an accident with at least one fatality
was 3 360 000 euros.

Crash prediction models (CPM) are trained on historical
data to estimate the likelihood of future crashes given the
values of explanatory variables (e.g., traffic, speed limit,
altitude, etc.). They are mainly used to identify risk factors
in order to steer the evolution of safety policies. In their
survey [3], Lord and Mannering provide a broad perspective
on the variety of data-related issues raised by crash count
prediction: over-dispersion of count data, temporal and spatial
correlations due to multiple measurements of a same location
at different times, fixed parameters that cannot adapt from
one roadway to the next, low sample-mean due to the sparsity
of crashes, non-linear relationships between crash-frequencies

and explanatory variables, etc. Most of theses issues are
made more prominent with the use of parametric models, in
particular generalized linear models (GLM). Indeed, GLMs
must undergo many transformations to adapt to the crash count
prediction context (e.g., the choice of a non-normal likelihood
distribution, the integration of random effects and hierarchical
models, etc). Whereas non-parametric approaches (e.g. neural
networks, tree-based algorithms, SVM...) will deal with most
of these issues without the need for specific adaptations
and will usually offer better predictive performances than
parametric models. However, Bayesian inference of GLMs is
still highly desirable for CPM as it offers many opportunities
to understand the relationships between crash frequencies and
explanatory variables while non-parametric approaches behave
as black-boxes.

Therefore, we propose a data-driven approach to auto-
matically associate a hierarchical structure and a non-linear
functional form to a Bayesian inferred GLM for crash count
prediction. In the first place, a well-chosen hierarchical struc-
ture can handle correlations among groups of observations
and significantly improve the quality of the predictions and of
their interpretation. However, in the literature, this structure,
which is dependent on the dataset, is the result of expert
knowledge. On the contrary, we propose to learn it from the
data by analyzing the results of a black-box machine learning
model with SHAP [4], a game-theoretic approach from the
field of explainable artificial intelligence (XAI). Secondly, a
GLM regression model is usually obtained by attaching a
linear model to a parameter of the likelihood distribution,
however a more complex non-linear functional form would
often be necessary to take into account interactions between
the explanatory variables. Therefore, we again propose to
learn the relevant interactions from the data by analyzing
the results of a special kind of polynomial neural network
with an automatically inferred layered-structure. In this way,
we combine the strengths of nonparametric ML algorithms
and Bayesian inferred GLM into an efficient and interpretable
framework.

We obtain promising results on a crash-count dataset of the
AREA french highway network made of more than 430 km
of roads in the Rhône-Alpes region and registering 12 554
accidents from 2008 to 2017. We also test our approach on
three open datasets of varied volumes and covering regression



and classification tasks. In all cases, we outperform classic
GLM and we get close to the performance of the best ML
models while remaining interpretable.

The article is organized as follows. We start with an
overview of the related works for, first, Bayesian inferred
GLMs and ML algorithms applied to crash-count prediction
and, second, the model interpretability methods, in particular
SHAP. Then, we describe our framework in the methodology
section. Finally, in addition to providing detailed analysis on
the highway network dataset, we share supplementary results
for three public datasets before concluding.

II. RELATED WORKS

In this section, we give an overview of the related works on
the application of GLM and ML algorithms to the crash-count
prediction problem. We also introduce model interpretability
methods that can alleviate the lack of transparency due to the
black-box behavior of ML algorithms.

A. Bayesian inferred GLMs

Crash-count data observations yi are often modeled with
a Poisson distribution [5]–[7] (i.e. a special shape of the
binomial distribution with a small probability of an event
and a large but unknown number of trials). A regression
model is obtained by attaching a linear function of the 1 . . . j
explanatory variables xij (e.g. traffic, speed limit, etc.) to the
rate λi of a Poisson likelihood. A log-link function is also
necessary to map the positive Poisson rate to the real line
covered by the linear model:

yi ∼ Poisson(λi)

log(λi) = β0 +
∑
j

βjxij

Thanks to the advances of probabilistic programming [8],
automatic and efficient Bayesian inference (BI) can be used
to compute estimates of the distributions of the parameters
given observed crash-count data [9]–[11]. In that case, given
a great initial uncertainty, parameters βj can be assigned
zero-centered normal flat priors with a conservative (i.e. large
enough) standard deviation. With the alternative frequentist
approach, regression coefficients βj are estimated by maximiz-
ing the non-linear likelihood with an iterative algorithm such
as the Newton-Raphson method. However, this approach only
offers point estimates of the parameters and doesn’t permit the
introduction of prior information.

For a counting process described by a Poisson random vari-
able, after conditioning on the predictors, the variance equals
the expected value. Often, for crash-count data, the observed
variance exceeds this amount and a negative binomial (NB)
likelihood is used instead of Poisson. Given the probability of
a crash, the NB gives the probability of observing n crashes
before the α-th non-crash. With λ representing the mean, its
probability mass function can be parameterized as follows
[12]:

NB(n;λ, α) =

(
n+ α− 1

n

)(
λ

λ+ α

)n(
α

λ+ α

)α

The variance of the NB is λ+ λ2

α . Therefore, α controls the
amount of over-dispersion. When α −→∞ the NB likelihood
approaches a Poisson(λ) distribution. Moreover, it can be
shown (see for example [12]) that a NB(λ, α) corresponds to
a Poisson(λ) where λ comes from a Gamma(a = α

λ , b = α),
with the gamma distribution parameterized as follows:

Gamma(x; a, b) =
a(ax)b−1e−ax

Γ(b)
for x > 0

This Poisson-gamma model – a continuous mixture of
Poisson distributions with rates distributed as a gamma dis-
tribution – has been identified as a reference model by road-
safety experts (see for example the AASHTO Highway Safety
Manual [13]). We find it at the core of many related works (
[14]–[17]) where crash count regression is done with a linear
model attached to the λ parameter of the NB through a log-
link function.

GLM can also be refined into multilevel models to take into
account clusters of related observations. For example, crashes
occurring in a given geographical region may possess specific
characteristics while not differing entirely from crashes in
other regions. A simple Poisson regression, by pooling all the
observations together, would assume an invariant population
and couldn’t benefit from regional peculiarities. Otherwise, k
clusters could be modeled with the addition of k−1 mutually
exclusive binary variables to the linear model, but this would
correspond to no pooling at all and the clusters would be
assumed independent of one another. Contrariwise, multilevel
models offer partial pooling through an adaptive regularizing
prior. Thus, in the following multilevel Poisson regression
with k clusters, hyperpriors µ and σ will allow an adaptive
shrinkage of the cluster-specific βjk towards a common meana.

yik ∼ Poisson(λik)

log(λik) = β0k +
∑
j

βjkxijk

βjk ∼ Normal(µ, σ)

µ ∼ Normal(0, 100)

σ ∼ HalfNormal(100)

In this way, Jones and Jørgensen [19] design a multilevel
model to predict the severity of an incident given the involved
casualties (level 1), their respective vehicles (level 2) and
the accident location (level 3). Ahmed et al. [20] conceive
a multi-level model to predict crashes on a mountainous
freeway by modeling both the dry or snow seasons and
spatial correlation between adjacent sites. Deublein et al.
[21] propose a multilevel model to manage simultaneously
4 response variables (resp. injury accidents, light injuries,
severe injuries and fatalities) through gamma updating of the
parameters. Finally, Fawcett et al. [22] predict future safety
hotspots with a multilevel model where, first, the variance of
the rate of a NB increases with the timestamp of an observation

aGelman indicates in [18] that a half-normal with high standard deviation
is a non-informative but proper prior for the variance parameter σ.



and, second, a global trend effect is altered by site-specific
ones.

B. Nonparametric Machine Learning algorithms

Since the relationship between crash-frequencies and ex-
planatory variables can be non-linear [3], ML algorithms often
give more accurate predictions than do statistical models. In
particular, this is the case for neural networks. Abdelwa-
hab and Abdel-Aty [23] obtain better results with a back-
propagation neural network (BPNN) than with an ordered logit
statistical model to predict the severity of accidents at inter-
sections. Chang [24] compares a one hidden layer BPNN with
NB regression for crash frequencies prediction. The BPNN
slightly outperforms the NB statistical model with a difference
of 0.6% of accuracy on testing data. Huang et al. [25] compare
a radial basis functions neural network (RBFNN) with BPNN
and NB regression for crash frequencies prediction. The best
results are obtained by RBFNN. In the experiments of Xie et
al. [26] on crash-count prediction, a bayesian neural network
outperforms both BPNN and NB regression. Similarly, Support
Vector Machine (SVM) are used for crash-count prediction
[27], crash-severity prediction [28], and the study of the effects
on crash-count predictions of spatial correlations at different
scales [29].

In all of these works, authors perform a sensitivity analysis
of the black-box model: for each explanatory variable, while
keeping all other variables unchanged, they record the effect
on the output prediction of a perturbation of the current
variable. However, as stated in [26], the relationship between
the current explanatory variable and crash frequency may vary
due to correlated variables, making it difficult to interpret
the sensitivity plots. Moreover, by generating simulated data
while assuming the explanatory variables to be independent,
sensitivity analysis will indiscriminately generate potentially
misleading hypothetical predictions for unlikely data points.
Finally, this method only provides global interpretations at the
scale of the whole network. It does not allow domain experts to
identify roadway segments where the predictive model behaves
singularly.

Furthermore, Karlaftis and Golias [30] as well as Chang
and Chen [31] experiment with the CART algorithm for tree-
based regression of crash-count data. The learned tree structure
is effective for prediction (e.g. in [31], on a test dataset, tree-
based regression obtains 52.6% accuracy against 52.3% for NB
regression). However, it is designed to use few node-splitter
variables (with the possible repetition of important ones) and
key variables can be missing due to their correlations with
sequences of node-splitters. Therefore, the decision tree itself
cannot be used to explain the contributions of risk factors.
Even if, by keeping track of candidate node splits during
the tree-growing process, variables can be ordered by their
predictive importance, this ordering is not visible in the final
model and the measure of importance is not associated with
confidence intervals. Moreover, according to [31], tree-based
regression does not handle correctly interactions between risk
factors.

To conclude, ML algorithms, being nonparametric, can
benefit from large amount of data to cover big hypothesis
spaces. In that way, they often outperform statistical models for
crash-count prediction. However, they act as black-boxes and
generate complex decision functions that lack interpretabil-
ity. Although sensitivity analysis can partially remedy this
problem, it has important drawbacks (e.g. no local analysis,
assumption of independence of explanatory variables. . . ) and
is not as satisfactory as the thorough possibilities of analysis
offered to road safety experts by Bayesian inferred GLM.

C. Local explanation models

To counteract the limitations of the global model-agnostic
methods and mitigate the black-box effect, local explanation
models have been proposed. Lundberg and Lee [4] introduce a
class of explanation models under the name of additive feature
attribution methods. They unify existing approaches such as
LIME [32], DeepLIFT [33], Shapley regression values [34],
etc. A model g in this class is a linear function of binary
variables:

g(z′) = φ0 +

M∑
i=1

φiz
′
i (1)

where z′ ∈ {0, 1}M , φi ∈ R and M the number of simplified
input features.

Let hx be an input mapping from simplified inputs to
original inputs (such that x = hx(x′)), and f a black-box
model. An additive feature attribution model tends to reach:

g(z′) ≈ f (hx(z′)) whenever z′ ≈ x′.

In [4], the authors prove that, under a choice of simple
desirable constraints, and given a simplified input mapping hx,
there is a unique optimal additive feature attribution model
whose coefficients φi correspond to the Shapley value of
feature i — a game theoretic concept measuring how much
feature i contributes to the prediction.

In [4], Lundberg and Lee present KernelSHAP, a novel
approximation method for which the simplified input mapping
is a binary vector indicating a subset S of features. Assuming
feature independence, and given an instance x, the prediction
of the model f on a simplified input vector is obtained by
fixing the features present in S to their values in x, and by
integrating over the marginal distribution of the features not
present in S:

f (hx(z′)) = EXS̄
[f(x)]

To enhance the interpretability of tree-based ML algorithms,
Lundberg et al. [35] propose the TreeSHAP variant that is
able to account for feature dependence by integrating over the
conditional distribution of the features not present in S.

Moreover, Lundberg and Lee [4] prove that, given an
appropriate weight function πx(z′), for an instance x, the



Shapley values of the original features are the coefficients of
the linear model g minimizing the following loss function:

L(f, g, πx) =
∑
z′∈Z

[f (hx(z′))− g(z′)]
2
πx(z′)

With πx(z′) =
M − 1(

M
|z′|
)
|z′|(M − |z′|)

Where M is the number of simplified input features and |z′|
is the number of present features in instance z′. Thus, for each
instance, the Shapley values of the features are the solutions
of this linear problem.

Thanks to its advantages, some safety analysis studies use
SHAP to investigate the impact of different features on arterial
incident duration [36] or in the context of real-time accident
detection [37]. So far, to the best of our knowledge, SHAP
has not been applied to long term crash prediction models.
Moreover, prior studies rely on this method to enhance the
interpretation of black-box models whereas in our approach,
to be presented in the next section, it becomes a provider of
objective priors obtained through the extraction of information
from available data.

III. METHODOLOGY

A. Overview

In this section, we describe how to extract, from data and
without prior expert knowledge, the information necessary to
build a hierarchical Bayesian model with first-order interac-
tions between explanatory variables to efficiently solve regres-
sion or classification problems while preserving interpretabil-
ity. First, we elucidate how Shapley values of the variables
give rise to a clustering of the original observations that is
likely to make sense in terms of the problem to be solved. This
clustering then informs a multilevel Bayesian model. Second,
we explain how a self-organized neural network reveals the
most important interactions between explanatory variables.
These interactions are then integrated to the functional form
of the multilevel model.

B. Supervised learning of a latent structure

We run the SHAP local explanation model (cf. related
works) on a trained black-box ML algorithm used to solve
the problem at hand. Given an observation, the individual
contributions of the explanatory variables – in other words
their Shapley values, see eq. (1) – appear on a forceplot (see
Fig. 1 for an example of an observation coming from our crash
prediction dataset). This visualization authored by Lundberg
et al. [38] represents the forces by which the variables shift
the output away from or towards the overall expected value
of the model. Lundberg et al. also propose to group all the
observations’ forceplots by similarity so as to reveal a structure
inherent to the unknown decision function of the ML algorithm
(see Fig. 2).

Inspired by this visualization, we propose to discover a
meaningful latent structure through a hierarchical agglom-
erative clustering (with the Ward linkage criteria) of the

observations described by the Shapley values of the variables.
We estimate the optimal number of clusters by detecting the
greatest increase in the squared Euclidean distance between
clusters when their number decreases (see Thorndike [39]
for the original presentation of this widely used method).
Experts can still fine-tune this number with the help of a
dendrogram to obtain clusters that better match with their
domain knowledge. For road safety studies, a cartographic
projection of the clusters helps confirm their merits. This is
illustrated in the next section.

Finally, the clusters are discovered on a train dataset on
which we also grow a decision tree classifier to associate each
observation to its cluster based on the values of the original
explanatory variables. We rely on this classifier to link each
observation of the test dataset to a cluster.

C. Supervised learning of interactions between explanatory
variables

When first-order interactions between explanatory variables
are integrated into a GLM, the relationship between a variable
and the target may depend on the value of another variable.
This can lessen the gap in predictive power between Bayesian
inferred GLM and ML algorithms inherently able to capture
complex nonlinear relationships. Moreover, these simple inter-
actions are interpretable while the potentially highly entangled
ones discovered by ML algorithms will often remain inaccessi-
ble to human understanding and increase the risk of overfitting.

In our approach, important first-order interactions are dis-
covered with a variant of the Group Method of Data Handling
(GMDH) family of supervised algorithms. This GMDH algo-
rithm is a self-organized multi-layered structure of nodes (see
Fig. 3). Each node generates its output z by applying a linear
function with a covariation term to a pair of inputs (x1, x2)
taken among either the nodes of the previous layer or the
original explanatory variables:

z = a0 + a1x1 + a2x2 + a3x1x2

Let n be the number of nodes of the previous layer and m be
the number of explanatory variables. To build the next layer,
for each of the

(
n+m

2

)
polynomials, the a0 . . . a3 parameters

are set by minimizing through Ridge regression the least
square error made by the polynomial when it approximates
the target on a train dataset. Then, the fitted polynomials
are evaluated on a validation dataset to select the top m
constituting the new layer. When the score obtained on the
validation dataset by the best node of the last layer added
stops improving, the process terminates and the best node of
the penultimate layer is the output of the network.

Thus, this self-organized network discovers a polynomial
that approximates the relationship observed on the training
dataset between the explanatory variables and the target. In our
approach, we use this polynomial to select the most important
first-order interactions between explanatory variables. If the
coefficient of a term involving the product of two variables
exceeds a given percentage of the magnitude of the biggest



Fig. 1. Forceplot showing the variables’ influence on the estimated crash count for a single observation.

Fig. 2. Observations grouped by similarity of their forceplots.

Fig. 3. Structure of the GMDH model.

coefficient, we add to our Bayesian hierarchical model an
interaction between these two variables.

D. Bayesian Hierarchical model

a) Multilevel structure: To integrate the discovered latent
structure, made of k clusters, into a GLM, we design a
multilevel model:

Yik ∼ L(Yik|µik,Ω)

µik = E[Yik|Xik] = g−1(ηik)

ηik = β0k +

N∑
j=1

βjkXijk

βjk ∼ Normal(µ, σ)

µ ∼ Normal(0, 100)

σ ∼ HalfNormal(5)

According to this model, output Yik, for observation i
in cluster k, is generated from a likelihood distribution L

parameterized with a set of specific parameters Ω and also µik,
the expected value of Yik conditioned on the observations. In
the previous section, we saw that, for crash prediction, L can
be a NB(Yik|λ, α) where λ is the expected number of crashes
and α controls the amount of authorized over-dispersion. Next,
ηik is a linear transformation of the explanatory variables. The
inverse link function g−1 is necessary to map the domain of
ηik (viz. the real line) to the one of µik. For example, since the
rate λ of a negative binomial must be positive, the exponential
function is used for crash-count prediction. In case of binary
classification, when the Bernouilli(p) likelihood is used, p
being a probability, g can be set to the logit function. Indeed,
the logit maps a parameter constrained between 0 and 1 onto
the real line (the inverse link function g−1 is, in that case, the
logistic function). Finally, as explained in the previous section,
the cluster-specific coefficients βjk, for the N explanatory
variables, depend on hyperpriors µ and σ, thus allowing an
adaptive shrinkage to a mean common to all the observations.

b) Integration of interactions into the GLM: For a given
observation i, let {inti1, inti2, . . . intiM} be the set of first-
order interactions selected by our GMDH-based methodology.
To integrate them into the Bayesian hierarchical model, just
modify the linear form:

ηik = β0k +

N∑
j=1

βjkXijk +

M∑
m=1

βmkintim

c) Model evaluation and validation: To use our model
for point-estimate prediction, we must derive a Bayesian
estimator from the posterior distributions. We use the mean
of the posteriors which can be shown to minimize the mean
squared error. In that way, we can compare our approach
to blackbox ML algorithms with standard quality metrics on
a test dataset. Moreover, to check if the estimation of the
posterior distributions converged well, we use the Posterior
Predictive Check (PPC) graphical analysis method. Indeed,
according to Gelman and Hill in [40, p.158], PPC is a
technique to “simulate replicated data under the fitted model
and then compare these to the observed data”. It allows one to



look for systematic discrepancies between real and simulated
data [41].

IV. EXPERIMENTS

In this section, we start by introducing the datasets used
to compare our proposal against a state of the art black-box
ML algorithm. Then, we describe our experimental setup, and
we interpret the performances of the models. Finally, for the
crash-count prediction dataset, we provide in-depth analysis
of the key elements of our framework.

A. Datasets and preprocessing

The AREA dataset focuses on the forecasting of accidental
highway segments located in the French Rhône-Alpes region.
The network is divided into 430 2 km-long segments that cover
both directions. After removing missing data (about 13% of
the original data, mainly due to absent traffic), there remains
3, 670 observations for a 10 years period from January 2008
to December 2017. Table I describes the variables.

Furthermore, we conduct additional experiments on three
public datasets:
• AirBnB NYC dataset [42] concerns the prediction of

AirBnb housing prices in the New Yort City area, given
parameters about the housing location, type and the
number of reviews.

• Breast cancer dataset [43] focuses on a binary classifica-
tion that determines whether a breast tumor is malignant
or not, considering some parameters computed from a
digitized image of a breast mass and characterizing the
cell nuclei.

• Insurance dataset [44] concentrates on the prediction of
the individual medical costs billed by health insurance,
given parameters describing individuals (smoker, age,
gender, etc.).

In preprocessing, categorical variables are one-hot-encoded
and continuous variables are standardized.

B. Experimental setup

Our approach requires choosing an efficient ML algo-
rithm whose predictions are analyzed in terms of Shapley
values to extract a latent structure. We take the XGBoost
[45] implementation of the gradient boosting tree algorithm
which is often among the top performers of ML compe-
titions such as Kaggleb. Its hyperparameters are optimized
by grid-search. Shapley values are computed with an open
source implementationc of the TreeSHAP algorithm [35].
The scikit-learnd implementation of the hierarchical ag-
glomerative clustering algorithm is applied to the observations
described by the Shapley values of the explanatory variables
in order to materialize the latent structure. Then, to associate
a new observation with its cluster, we train a decision tree
classifier also from the scikit-learn toolkit. Moreover,

bhttps://www.kaggle.com/
chttps://github.com/slundberg/shap
dhttps://scikit-learn.org/stable/

to discover first-order interactions, we use GmdhPye, an open
source Python implementation of the GMDH algorithm. Be-
sides,Table II summarizes the values of the parameters and
priors for the GLM on the four datasets. Bayesian inference
is done with the No U-Turn Sampler (NUTS) [46] algorithm.
Two Markov chains run for 3000 iterations with a burn-in
period of 1000 iterations. The CPU-based PyMC3 [47] library,
with its efficient set of utilities, is employed for all datasets
except Airbnb NYC for which the GPU-based NumPyro [48]
(about 7 times faster in our experiments) is preferred due to
the large number of observations.

C. Performance metrics

For regression tasks, we select the Root Mean Square Error
(RMSE) and Mean Absolute Deviation (MAD) metrics:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 MAD =
1

n

n∑
i=1

|ŷi − yi|

with n the number of observations, yi the target and ŷi the
predicted value.

For the classification task, we use accuracy, recall and
specificity:

accuracy =
TP + TN

TP + TN + FP + FN

recall =
TP

TP + FN

specificity =
TN

TN + FP

where TP , TN , FP and FN are respectively the numbers
of true positives, true negatives, false positives and false
negatives.

D. Results

Results summarized in Table III are averages of a 5-folds
cross-validation.

a) AREA dataset: The so-called local model obtains the
best results. Let us describe its strategy. With our 10-years-
deep dataset, there are multiple observations for a same high-
way segment. Moreover, most explanatory variables associated
with a segment, except the traffic, are constant over time.
Therefore, for a segment in the test set, the local model
predicts the average of the crash-counts observed for this
same segment in the training set. Intrigued by the similar
performances achieved by XGBoost and the local model, we
discovered that, for nearby observations in the parameters’
space, the paths taken through the XGBoost tree lead almost to
the same leaves. Thus, on this dataset, the XGBoost algorithm
tends to approximate the behavior of a naı̈ve local model.
So, these two best performing models tell us that a good
strategy to predict a crash-count at a given location is to
average the crash-counts already known to have occurred
there. In this way, they are unable to provide information on
risk factors correlated with observed accidents. In comparison,

ehttps://github.com/kvoyager/GmdhPy

https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/mirichoi0218/insurance
https://www.kaggle.com/
https://github.com/slundberg/shap
https://scikit-learn.org/stable/
https://github.com/kvoyager/GmdhPy


TABLE I
DESCRIPTIVE STATISTICS OF THE DEPENDENT VARIABLE AND EXPLANATORY VARIABLES FOR THE AREA DATASET

Variables Description Mean Std Min 25% 50% 75% Max
explanatory variables

log aadt logarithmic value of the Average Annual Daily Traffic (AADT) 9.6 0.6 7.8 9.3 9.7 9.9 10.7
avg num lanes Average number of lanes 2.2 0.5 1.0 2.0 2.0 2.0 4.0

avg altitude Average altitude (m) 332.3 152.8 92.4 226.6 268.8 400.7 890.6
avg right shoulder Average rightshoulder width (m) 3.0 0.1 2.1 3.0 3.0 3.0 3.0

dist interchange distance to closest interchange (km) 3.3 3.8 0.0 1.0 2.3 4.3 25.0
dist restingplace distance to closest restingplace (km) 4.3 3.4 0.0 1.6 3.6 5.9 18.0
avg speed limit average speed limit (km/h) 124.6 10.8 74.6 125.0 130.0 130.0 130.0

Dependent variable
acc tot Traffic crash count (all severities considered) 3.42 4.0 0.0 1.0 2.0 4.0 60.0

TABLE II
PARAMETERS AND PRIORS FOR THE BAYESIAN HIERARCHICAL MODELS

Dataset Link func. N clusters 1st level 2nd level 3rd level
AREA Log 4 Yik ∼ NB(µik, α)a, α ∼ G(a = 0.5, b = 2.5)b βj ∼ N (µ, σ) µ ∼ N (0, 10), σ ∼ H(5)

AirBnb NYC Identity 4 Yik ∼ N (µik, 1000) βj ∼ N (µ, σ) µ ∼ N (0, 100), σ ∼ H(5)

Insurance Identity 2 Yik ∼ N (µik, 1000) βj ∼ N (µ, σ) µ ∼ N (0, 100), σ ∼ H(5)

Breast cancer Logit 2 Yik ∼ B
(
p =

exp (µik)
1+exp (µik)

)c
βj ∼ N (µ, σ) µ ∼ N (0, 100), σ ∼ H(5)

a Negative Binomial distribution; b Gamma distribution; cBernoulli distribution

Fig. 4. Posterior Predictive Checks (PPC) on two clusters. Left column:
observed data (cluster 2: 2064 samples; cluster 3: 104 samples). Right
column: replicated data (2000 simulations).

our approach, although inferior in predictive performance to
these two models, obtains a 17% increase in RMSE when
compared to a standard Bayesian model. Moreover, we show in
section IV-E that this improvement in predictive performance
comes with enhanced interpretability.

In addition to out-of-sample evaluation, we validate our
hierarchical Bayesian model with graphical PPC analysis. In
Fig. 4, we compare, for two examples of clusters, the his-
togram of observed crashes with that of samples drawn from
the posterior distribution of crash-counts. Green and black

vertical lines indicate the means of, respectively, the observed
and replicated data. The two distributions being similar, our
model fits adequately the data. Thus, the integration of latent
structure and interactions do not bring skewed prior knowledge
that would disturb the inference.

Finally, to ease the validation of our results by AREA
safety experts, we perform Hot Spot Identification (HSID), an
essential tool for resources’ allocation in safety management.
We use the empirical Bayes (EB) method to identify 26
hotspots in 2017. Interested readers may refer to [49] for more
details on HSID.

b) Other datasets: We observe the superior predictive
performance of XGBoost, probably due to its ability to rep-
resent complex non-linear functions. This is also why this
model is well-suited for the Shapley values’ analysis that
discovers a latent structure in connection with the predictive
task. Indeed, our approach outperforms by a wide margin
a standard Bayesian model. Finally, if the integration of
first-order interactions improves only to a small extent the
performances of the hierarchical model, it has nonetheless the
potential to greatly enhance the quality of its interpretation, as
demonstrated in the next section.

E. Analysis for the crash-prediction dataset

a) Latent structure: to analyze the clusters automatically
discovered by our approach, we associate a map view from
QGISf (Fig. 5) with descriptive statistics (table IV). Clusters
0 and 3 are made up of highway segments located in the
plains, close to major cities and with high traffic. Cluster
2, the largest, mainly comprised of 2-lanes segments in the

fhttps://qgis.org/

https://qgis.org/


TABLE III
MODEL PERFORMANCE COMPARISON

Dataset RMSE MAD
AREA
Locala 2.73 1.77

XGBoost 2.75 1.80
Bayesianb 3.72 2.30

BHc 3.11 2.02
BH-intd 3.08 2.00

AirBnB NYC
XGBoost 0.434 0.306
Bayesian 0.513 0.371

BH 0.476 0.350
BH-int 0.473 0.348

Insurance
XGBoost 4562 2600
Bayesian 6119 4220

BH 4920 2978
BH-int 4912 2972

Accuracy Specificity Recall
Breast cancer

XGBoost 0.96 0.94 0.98
Bayesian 0.95 0.92 0.97

BH 0.97 0.95 0.97
BH-int 0.97 0.94 0.97

a Local model averaging observed crash counts of closest neighbors
b Standard Bayesian inferred GLM
c Bayesian Hierarchical model without interaction effect
d Bayesian Hierarchical model with interaction effects

undulating countryside, counts the lowest number of acci-
dents. Conversely, segments of cluster 1, the smallest, have
the highest numbers of accidents. They are close to main
interchanges near the major cities of Lyon and Chambéry.
Moreover, those near Chambéry include a series of turns
leading to a tunnel. This combination of potential risk factors
could explain a large number of accidents. Thereupon, to
validate this assumption, we are collecting data related to
sinuosity and tunnels’ positions to integrate them into our
model. Note that pointing out such a small cluster made of
singular accidental segments is of great value for the safety
analysis process.

Furthermore, road safety experts from AREA confirm the
relevance of these automatically discovered clusters. They
point out that the time saved can advantageously be spent on,
for example, planning remedial actions.

b) Bayesian hierarchical GLM: the analysis of the pos-
terior distributions (Fig. 6) allows one to measure the influence
of each variable on the crash count. Due to the inherent
partial pooling nature of the model, posterior distributions are
dissimilar among clusters thus revealing various impacts of the
same explanatory variable on the crash count. For instance, the
posterior’s mean related to speed limit in Fig. 6b is positive
for cluster 2 and 3, but negative for cluster 1.

Moreover, we observe that the shapes of the posterior
distributions are different from one cluster to another. This
variability is linked to the size of the clusters: in general,
the more samples, the more confidence in the estimates.
For example, in Fig. 6a the posterior of log(AADT) has
a sharpened probability distribution for cluster 2 but a flat

Fig. 5. Computed clusters of SHAP instances (2017) — each point represents
the initial reference point of a 2 km-long section. For visual purposes, sections
are only displayed for a single driving direction.

(a) log(AADT)

(b) speed limit

Fig. 6. Two examples of posterior distributions.

one for cluster 1. The latter highlights a great uncertainty in
estimating the coefficient associated with traffic and calls for
extra vigilance when drawing conclusions for this risk factor.

c) Interaction effects: in our experiments, the GMDH
polynomial highlights a major first-order interaction between
speed limit and altitude. Triptych plots, introduced by Mc
Elreath in [50, p.234], are made to visualize such interactions.
Thus, Fig. 7 depicts the bivariate relationship between speed
limit and predicted crash counts for cluster 2, depending on
whether or not an interaction with the altitude is integrated
into the Bayesian model. We observe that the slopes of the
regression lines, constant and positive for both models, are



TABLE IV
DESCRIPTIVE STATISTICS OF THE DEPENDENT VARIABLE AND EXPLANATORY VARIABLES FOR EACH CLUSTER

Cluster 0 (724a) 1 (44) 2 (2064) 3 (104)
Variables mean std. min max mean std. min max mean std. min max mean std. min max
log aadt 9.98 0.43 8.17 10.7 9.54 0.06 9.41 9.66 9.47 0.51 7.84 10.5 9.77 0.83 8.36 10.6

avg num lanes 2.49 0.59 2 4 2.09 0.20 2 2.5 2.04 0.24 1 3.8 3.17 0.64 2 4
avg altitude 305 136 92.4 721 251 11.5 229 261 347 159 181 891 233 29.4 193 289

avg right shoulder 2.99 0.07 2.5 3 2.96 0.05 2.9 3 2.98 0.09 2.1 3 3 0 3 3
dist interchange 2.37 3.18 0 23.0 1.5 1.14 0.59 3.75 3.62 3.90 0.07 25.0 2.08 1.87 0 5.34
dist restingplace 4.43 3.81 0 18.0 8.12 3.82 0.15 10.3 4.09 3.15 0 15.0 5.01 3.53 0.15 14.0

speed limit 122 10.2 90 130 85.8 9.68 74.6 102 127 8.15 90 130 113 16.6 90 130
acc tot 5.39 2.99 0 18 19.0 11.9 2 60 2.01 1.80 0 13 12.8 5.44 3 36

aNumber of samples for each cluster

(a) without interaction effect

(b) with interaction effects

Fig. 7. Triptych plots of predicted crash counts vs. speed limit on cluster 2.

steeper when considering an interaction. Thus, taking into
account its interaction with altitude, the positive influence of
speed limit on predicted crash counts gets more pronounced
with high elevations.

V. CONCLUSION

Motivated by a crash-count prediction problem for a french
highway network, we introduced a framework to build efficient
and interpretable Bayesian hierarchical models for regression
or classification tasks. Our main contribution is based on
the data-driven discovery of objective priors in the form of
a latent structure and strong first-order interactions between
explanatory variables. We start with a trained and usually
efficient, albeit opaque, ML algorithm in order to compute
for each observation the Shapley values of the explanatory
variables. Then, a latent structure, related to how the ML
algorithm predicts the target, emerges from the hierarchical
agglomerative clustering of the observations described by the
Shapley values. Furthermore, we analyze the structure of a
trained self-adaptive polynomial network to discover important
first-order interactions.

Our experiments, conducted on four datasets, show that
the integration of the latent structure and interactions into a

Bayesian hierarchical model significantly improves the predic-
tive performance compared to a traditional GLM. Moreover,
while our model is less efficient than a state of the art black-
box ML algorithm, it offers a high degree of interpretability.
Indeed, the hierarchical structure allows a cluster-specific
analysis of the posteriors with the possibility of quantifying the
uncertainty associated with the coefficients of the explanatory
variables. Interactions, on the other hand, tend to deservedly
amplify the influence of key explanatory variables by bringing
out configurations where their relationships with the target
depend on secondary, context carrier, variables. Regarding
highway safety, this enhanced interpretability helps experts in
the field to accurately assess the risk factors and thus lead to
appropriate policy decisions.

Finally, future works will focus on the adaptation of our
framework to a temporal granularity gradually reduced until
it approaches real time crash risk assessment. It will require
the addition of explanatory variables (e.g. weather conditions,
holidays, etc.) that could increase the advantage of ML algo-
rithms able to produce complex non-linear decision functions.
In this context, the challenge could even be greater to balance
the quality of the predictions and their interpretability.
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