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ABSTRACT

Unsupervised Relation Extraction (RE) aims to identify relations be-
tween entities in text, without having access to labeled data during
training. This setting is particularly relevant for domain specific RE
where no annotated dataset is available and for open-domain RE
where the types of relations are a priori unknown. Although recent
approaches achieve promising results, they heavily depend on hy-
perparameters whose tuning would most often require labeled data.
To mitigate the reliance on hyperparameters, we propose Prompt-
ORE, a "Prompt-based Open Relation Extraction" model. We adapt
the novel prompt-tuning paradigm to work in an unsupervised set-
ting, and use it to embed sentences expressing a relation. We then
cluster these embeddings to discover candidate relations, and we ex-
periment different strategies to automatically estimate an adequate
number of clusters. To the best of our knowledge, PromptORE is
the first unsupervised RE model that does not need hyperparameter
tuning. Results on three general and specific domain datasets show
that PromptORE consistently outperforms state-of-the-art models
with a relative gain of more than 40% in B3, V-measure and ARL
Qualitative analysis also indicates PromptORE’s ability to identify
semantically coherent clusters that are very close to true relations.
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1 INTRODUCTION

Information Extraction models aim to extract the meaningful in-
formation from text, that is, entities and relations between these
entities. The resulting network of relations can then be transformed
into knowledge graphs that are used in multiple downstream tasks
such as recommender systems [16], logical reasoning [5] or ques-
tion answering [22]. Information Extraction is usually seen as a
two-step process: (1) Named Entity Recognition and (2) Relation
Extraction. In this paper, we focus on Relation Extraction, which
consists in identifying the relation between two entities in the
context of a piece of text.

Relation Extraction (RE) is often seen as a supervised task [24],
thus relying on datasets labeled with a predefined set of relations.
However, this setting can be restrictive for some applications, espe-
cially domain-specific RE lacking annotated data or open-domain
RE where we do not know in advance the relations expressed in the
dataset. Therefore, more flexible paradigms have been proposed
such as distant-supervision [38, 43], which tries to automatically an-
notate data; few-shot learning [40], which learns from a very small
set of labeled instances; or unsupervised learning. In particular,
unsupervised RE (also called OpenRE) does not require a training
dataset with labeled relations and assume no prior knowledge about
expected types of relations.

Several recent OpenRE approaches obtain interesting results on
datasets containing tens or hundreds of relation types [21, 33, 62].
They often try to compute a vector representation of the relation
expressed in the sentence (also called relation embedding) and then
cluster all the embeddings to identify groups of similar relations.
Most of these methods rely on hyperparameters (e.g. number of
epochs, regularization, early stopping, number of relations types,
...) that have a significant impact on their overall performance.
However, tuning these hyperparameters most often requires access
to labeled data, thus limiting the applicability of such models in a
real-world unsupervised scenario.

We therefore propose PromptORE, a "Prompt-based Open Re-
lation Extraction" model, which relies on one hyperparameter at
most: the target number k of relation types to be extracted. Our
experiments show that even when no educated guess can be made
about k, an efficient estimate can easily be obtained in an automatic
way. Thus, to the best of our knowledge, PromptORE is the first
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proposal for an unsupervised Relation Extraction system that can
operate in a fully unsupervised setting.

To achieve this, we first compute, for each instance (a piece of
text) of a dataset, a relation embedding that represents the rela-
tion expressed in the instance. Contrary to previous approaches
that fine-tuned BERT [21, 62, 71], we use the novel prompt-tuning
paradigm. Prompt-tuning replaces the usual training by designing
a prompt (i.e., a text that is inputted to BERT), able to elicit as
much information as possible from the Pretrained Language Model.
Prompt-tuning is already used in few-shot RE [6, 15, 35, 56]. We
propose to go further and adapt this paradigm to work in a fully
unsupervised way. Prompt-tuning has many benefits: (1) it does not
involve training or fine-tuning BERT, thus removing a significant
number of hyperparameters, (2) the proposed encoder is extremely
simple, yet (3) we show that these prompt-based relation embed-
dings provide better results than current state-of-the-art methods.
Usual clustering algorithms are then applied to group together the
embeddings in order to discover relation types.

Let us summarize our main contributions:

e We propose PromptORE, a novel OpenRE model that min-
imizes the number of hyperparameters and provides clear
ways to tune its only hyperparameter k in a strict unsuper-
vised setting.

e We adapt the prompt-tuning paradigm to an unsupervised
setting, which allows us to leverage more expressive embed-
dings than previous entity-pair representations [21, 34, 62].

o We show that this model outperforms consistently previous
state-of-the-art approaches on three different datasets, cover-
ing both general and specific domains. We also demonstrate
that the predicted clusters are semantically coherent and
very close to the true relations.

2 RELATED WORK

For the sake of clarity, we use relation and relation type interchan-
geably, and we define them as a concept linking two entities, for
example married_to, born_in, located_in; but we distinguish
relation instance, which represents the realization of a relation, that
is, a piece of text expressing the relation.

Relation Extraction aims to discover the binary relation that
links two entities mentioned in a text. RE allows to extract triples
of the form (e1, relation, e2) that can be used thereafter to build
for instance a knowledge graph. Even though Relation Extraction
from documents is the most general paradigm, the majority of
models focus on extraction within a single sentence ignoring inter-
sentence relations [17, 18]. Recent approaches follow a two-step
process [17, 28, 34, 53]:

(1) Relation Embedding, which computes a vector representa-
tion of the relation instance,
(2) Relation Classification.

To compute relation embeddings, word-embedding models are often
used, such as GLoVe [39], ELMO [41], Bi-LSTM embeddings [34], or
more recently BERT embeddings [9, 59]. In the general case, relation
classification is seen as a supervised task therefore needing labeled
datasets, where entities have been extracted and labels describing
the relation are available.
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Supervised Relation Extraction. Recent models implement a joint
entity and relation extraction scheme [24]. Luan et al. [34] pro-
pose a multi-task learning approach that simultaneously optimizes
a BERT-based entity extractor, relation extractor and coreference
resolution model. Wadden et al. [60] add event triggers and roles de-
tection into the same multi-task framework. Lin et al. [28] improve
these models by incorporating external constraints on entity types
and relations. Zhong et al. [73] show nevertheless that a simple
pipelined approach outperforms complex multi-task models, thanks
to a markup-based encoding of the sentence. However, these super-
vised approaches rely on large labeled datasets, available only for
generic language corpora and a few specialized domains. Therefore,
other works aim at reducing this reliance on such annotated data.

Distantly-supervised Relation Extraction. Distant-supervision [38,
43] tackles this problem by automatically annotating texts based
on external knowledge bases. This annotation process creates large
scale datasets that are characterized by a high level of noise. Zhang
etal. [69] identify two types of noise: intra-dictionary bias (spurious
entity/relation annotations due to wrong entity linking) and inter-
dictionary bias (non exhaustiveness of knowledge bases, meaning
that some entities/relations cannot be labeled). Most works focus
on trying to reduce and mitigate these biases [68-70, 72]. However,
distant-supervision does not apply to very specific domains that
lack large knowledge bases.

Few-Shot Relation Extraction. This approach aims to learn a rela-
tion extraction model from the least amount of labeled data. Models
focus on relation classification: they suppose the existence of a
relation between two entities [40], ignoring the case of sentences
mentioning unrelated entities. Snell et al. [52] propose to use pro-
totypical networks to determine a prototype for each relation, and
predict the relation by measuring the distance between the relation
instance embedding and each prototype. Ren et al. [42] and Zhao
et al. [71] propose to improve this method using transfer-learning
with general domain labeled datasets.

Very recent few-shot methods consider the use of prompt-tuning
with BERT and more broadly Pretrained Language Models (PLMs)
[13], as it allows for more efficient learning in low-resource setting
[30]. Prompt-tuning replaces fine-tuning by designing a "prompt",
that is, a piece of text containing the special [MASK] token, and
ask a PLM such as BERT to predict the embedding of this [MASK]
token. This embedding is then compared with a set of target tokens
(that can be seen as relation prototypes) to determine the relation
expressed in this sentence [6, 15, 35, 56]. Efforts are focused in op-
timizing the prompt # and selecting a set of target tokens effective
at representing the relations. In particular, Jiang et al. [25] propose
text-mining and paraphrasing-based methods to generate prompts.

The current major limitation with few-shot RE is the closed-
world hypothesis, which stipulates that relations must be known in
advance (although recent papers start to explore none-of-the-above
prediction [14, 35]).

Unsupervised Relation Extraction. Unsupervised RE (or OpenRE
[3]) aims to extract relations without having access to a labeled
dataset during training. Methods can be divided in two subgroups:
(1) triples extraction and (2) relation typing. Banko et al. [3] extract
triple candidates using syntactic rules and refine the candidates
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with a trained scorer. Saha et al. [48] propose to simplify conjunc-
tive sentences to improve triples extraction. More recently, neural
networks and word-embedding were applied to solve this task
[8, 54], requiring a general domain annotated dataset to pretrain
their model. Finally, Roy et al. [47] propose an ensemble method
to aggregate results of multiple OpenRE models. These triples ex-
traction approaches rely on surface forms, which makes it hard for
them to group instances that express the same relation using very
different words and syntax.

To solve this problem, Yao et al. [63] propose instead to learn
a relation classifier, using Latent-Dirichlet Allocation [4], a gen-
erative probabilistic model. The majority of these relation typing
methods rely on relation embeddings: first, they compute an em-
bedding, which encodes the underlying relation, second they use
this embedding to identify groups of relation instances. The earliest
methods use syntactic and semantic features [37, 63, 64]. Elsahar et
al. [10] add word-embedding features based on GloVe [39], apply
dimensionality reduction methods, and an agglomerative clustering
model to identify clusters of relation instances. Marcheggiani et
al. [37] use a fill-in-the-blank task: they mask one entity and try
to predict it using a Variational Auto-Encoder (VAE) [26], prov-
ing the benefit of generating a supervision signal. This method
is further improved by adding two regularization losses to limit
overfitting [51] and by finding a more effective formulation of the
VAE task [65]. Tran et al. [58] however succeed to outperform VAE
approaches only using entity types as their relational embeddings.

Hu et al. [21] adopt an other supervision signal: they compute
pseudo labels using a k-means clustering on relation embeddings,
and train a classifier to reproduce these pseudo labels, allowing
them to fine-tune a BERT model. As an alternative, Wu et al. [62]
propose to learn a distance metric representative of the relations
(using Siamese neural networks [7]), to compare pairs of instances.
This metric is learned on an annotated dataset, and applied to unla-
beled data to identify instances expressing similar relations. Lou et
al. [33] use ranked list loss [61] as an alternative to Siamese neural
networks. Finally, a tendency of recent unsupervised RE methods
is to use transfer-learning: learning some relation embeddings or
metrics on general domain annotated datasets and try to adapt them
to unsupervised data [33, 62, 71]. Compared to triples extraction,
relation typing assumes that there is always a relation between the
two entities, which can be seen as a limitation.

To allow evaluation of such OpenRE models, previous works
tend to train them on labeled datasets and compare their predictions
with ground truth relations using external clustering evaluation
metrics such as V-measure [45], Adjusted Rand Index [23, 55] or B3

2].

Are current OpenRE models truly unsupervised ? Although Open-
RE models extract relations from unannotated datasets, we argue
that they are not truly unsupervised approaches: the main prob-
lem is hyperparameter tuning. All these approaches rely exten-
sively on hyperparameters that need to be adjusted: number of
epochs/iterations [21, 33, 37, 58, 62, 65], learning rate, regulariza-
tion [51], entity types [58], early-stopping [58], etc., and most im-
portantly the number of relations k the model is supposed to extract
[10, 21,33, 37, 51, 58, 62, 65]. In a real unsupervised setting these hy-
perparameters are extremely hard to determine, and cited papers do
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not present satisfactory methods to estimate them without labeled
data. Therefore, we conclude that these mentioned approaches are
not fully unsupervised when it comes to hyperparameter tuning,
which in our opinion, restricts their use in a real-world application.

As a result, it motivates us to define more precisely the unsuper-
vised RE setting as learning a RE model and tuning its hyperparame-
ters using only unlabeled data.

3 PROPOSED MODEL

PromptORE aims to extract the binary relation r between two
already known entities e1 and e2 present in the same sentence!.
More precisely, as we follow an unsupervised setting, the first
objective of PromptORE is to group instances expressing the same
relation r, without having access to labeled data during training
and hyperparameter tuning. Our second objective is to minimize
the number of hyperparameters needed by PromptORE and to
provide clear procedures to adjust them without annotated data.
To achieve these goals, we suppose we have access to a dataset
D (see Figure 1) containing instances with the following properties:

e An instance is described with a triple (S, e1, e2), where S =
[to, ..., ts—1] is the instance text composed of tokens?, el =
[Lstart(e1)s -+ tend(e1)] and €2 = [Lsart(e2)s -+ tend(e2)] are
two entities identified by their indexes in S.

e We suppose that el and e2 have already been extracted (but
not typed).

o Intheinstance text S, el and e2 are linked by a binary relation
r. As previous approaches, we do not consider the case where
there is no relation between el and e2.

e We do not have access to any relation label during training
and hyperparameter tuning.

R is the set of the k relations contained in 9. We consider that we
have no information about the relations in R (e.g. their labels, their
linked entity types, etc.). Regarding k, it can either be given by the
user or automatically estimated by methods described in section
3.2.

As shown in Figure 1, PromptORE is composed of two main
modules (similarly to [21, 71]):

(1) Relation Encoder. This module computes a vector representa-
tion of the relation that is expressed in the current instance.
To do that, we apply a modified prompt-tuning method to
leverage BERT embeddings.

(2) Relation Clustering. It clusters the relation embeddings of the
whole dataset, in order to identify groups of instances that
are expected to express the same type of relation®.

3.1 Relation Encoder

This module aims to compute a vector representation (or relation
embedding) of the relation expressed between el and e2 in the
current sentence S. We want this relation embedding to be rep-
resentative of the underlying relation: if the relation embeddings
of two instances are close (relative to a certain distance metric),

1As previous works, we focus on sentence RE, even though we are aware that
some relations may be missed.

% Token as defined by BERT [9]: punctuation, word or part of word.

3In practice, clusters may not be perfectly pure: they may contain instances
expressing different relations, e.g. clusters c-18 or c-49 in Figure 1 or Table 4.
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Dataset D
1. Queen Elizabeth II was married to Prince Philip.
2. Michelle Obama, Barack Obama's wife, was born in Chicago.

n. Like the Everest, Mount Annapurna is located in the Himalayas.

\ 4

1) Relation Encoder

Prompt generation I
-
,P [CLS] Queen Elizabeth II was married to Prince Philip. -
Queen Elizabeth II [MASK] Prince Philip.[SEP]
Prompt embedding
[CLS] Queen ... Philip . Queen ... [MASK] ... Philip . [SEP]
BERT
hy = BERT(P,[MASK])
L 3
T
L I, = BERT(P. [MASK))

2) Relation Clustering

A

“a : —;.\ N
1S den
\:"r

r=[sibling,
father, child,
mother, spouse]

r=[mountain_range, located_in]

) Cluster c-2
_ r=[p1atforn]

-

Figure 1: Overview of PromptORE.

these instances convey, most probably, the same relation. In other
words, the Relation Encoder aims to abstract the notion of relation
instance, to provide embeddings that are easier to compare.

In recent papers [21, 29, 33, 60, 65, 71, 73], relation embeddings
are computed using Pretrained Language Models such as BERT
[9, 59] or RoBERTa [31]. BERT (and RoBERTa) takes as input some
tokenized text, and computes for each input token an embedding,
which is representative of the token itself and its context of use.
BERT also contains a Masked Language-Model (MLM) head, which
allows it to predict the most probable tokens associated with an
embedding. In addition to "real word" tokens, BERT uses some
special tokens:

e [CLS] and [SEP]. By convention, [CLS] needs to be inserted
at the start of the text, and [SEP] indicates the end of the
text.

e [MASK]. It represents a token that is hidden/unknown, and
BERT will try to compute a satisfactory embedding. Then,
using the MLM head, BERT can predict the most probable to-
kens. Thanks to this [MASK] token, BERT can auto-complete
sentences or generate text.

We define h = BERT(S, [MASK]) as the BERT-embedding of the
token [MASK], in the context of S (a piece of text that must con-
tain exactly one [MASK] token). Finally, for the sake of simplicity,
variables/parameters (written with a bold name), are automatically
replaced by their value in a quoted string. For example, if a = One,
"a, Two" corresponds to One, Two.

Previous works [21, 29, 33, 60, 65, 71, 73] use an entity-pair repre-
sentation paradigm to compute relation embeddings. We however
opt for another technique: prompt-based encoding.
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Prompt-Tuning. The idea behind prompt-tuning is to benefit
from BERT’s ability to predict masked tokens ([MASK] tokens). It is
already used in few-shot RE by [6, 15, 35, 56]. It can be summarized
as follows:

(1) Design a prompt P, which is a sequence of tokens that in-
cludes one [MASK] token. For instance, Lv et al. [35] use the
template P (S, el,e2) = "[CLS] S In this sentence, el
is the [MASK] of e2.[SEP]".

(2) Identify a set of label tokens £ that represents each relation.

(3) Predict the [MASK] embedding in the context of £ using
BERT: h = BERT(P, [MASK]).

(4) With this embedding, compute the probability to predict
each label token [ € £ thanks to the MLM head of BERT.

(5) Select the relation represented by the label token [ with the
highest probability.

Prompt-tuning does not require to fine-tune BERT, but necessitate
to design an optimal prompt # and a set of label tokens L. They
are usually adjusted using a labeled dataset and therefore cannot
be applied directly to our unsupervised Relation Encoder.

Unsupervised Prompt-based Relation Encoder. To adapt prompt-
tuning for unsupervised RE, we propose to remove the set of label
tokens £, and use the simplest prompt # possible. Our proposed
prompt template is:

P(S,el,e2) = "[CLS] S el [MASK] e2.[SEP]" (1)

with S the instance text, el (resp. e2) the text of the first (resp.
second) entity. For example, given the sentence S = Queen Elizabeth
II was married to Prince Philip., and entities el = Queen Elizabeth I
and e2 = Prince Philip, the prompt is:

P = [CLS] Queen Elizabeth Il was married to Prince Philip. Queen
Elizabeth I [MASK] Prince Philip.[SEP]

As we remove £, we decide to use the [MASK] BERT embedding
as our relation embedding. Thus, the Relation Encoder process is
the following (as shown in Figure 1):

(1) Apply the template defined in eq. (1) to generate a prompt
for the current instance.

(2) Predict the embedding of the [MASK] token with BERT, and
use it as our relation embedding: h = BERT(#, [MASK]).

Alternative Prompts. If we analyze P, we can see that BERT will
likely fill the [MASK] token with a verb, as it is trained to produce
grammatically correct sentences. It raises questions: can all relations
be expressed with a verb, and with a single word? We did an analysis
on the 9892 Wikidata relations with surface forms:

e More than 75% of relations need 2 words or more to be
expressed (e.g. acceptable surface forms for birth_place
are born in or the birth place of).

o Surface forms usually contain a root word (noun, verb) ac-
companied by tool words. 92% of the root words are nouns,
and only 6.7% verbs. The most common tool words are: of,
in, by, the, a, to.

It can be therefore interesting to consider alternative prompts
that encourage BERT to predict a noun ([35] also focus on noun
prediction). In addition, Lv et al. [35] introduce a prefix to their
prompt: "In this sentence". Therefore, we define alternative
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prompt templates aiming at predicting noun, and with various
prefixes:

P/(S,e1,e2) = "[CLS] S el is the [MASK] of e2.[SEP]"

#,(S,el,e2) = "[CLS] S In this sentence, el is the [MASK]
of e2.[SEP]"

P;(S,el,e2) = "[CLS] S We deduce that el is the [MASK]
of e2.[SEP]"

7’2’ is the same as [35]. However, we cannot choose the optimal
prompt from the previous ones nor use automatic methods to gen-
erate prompts (such as [25]) as they require access to labeled data.
Therefore, the main results of PromptORE are computed using
%, the simplest prompt of all. In a second phase, we will analyze
PromptORE’s performances with these alternative prompts.

3.2 Relation Clustering

We can measure the similarity between two BERT embeddings
using an euclidian distance as these embeddings are normalized
[9]. Similarly to previous works [10, 21, 71], we cluster the rela-
tion embeddings computed on the entire dataset O to find groups
of instances, and we expect these clusters to be good candidate
relations.

K-Means Clustering. If we know in advance the number of rela-
tions k, we propose to use a simple k-means clustering [32, 36].

Clustering without k. The most general case is however that we
do not know k. To tackle this problem, we can take two points
of view: use clustering models that do not require a predefined
number of clusters, or estimate k automatically and use it with a
regular clustering method.

For the first point of view, multiple models are available, the
main ones being Agglomerative Clustering (HAC) [50], DBSCAN
[11], OPTICS [1] or Affinity Propagation [12]. Nevertheless, most
cannot be applied in our case: DBSCAN and HAC need other hy-
perpameters (such as density) and Affinity Propagation does not
scale well to big datasets. Therefore, we propose to use OPTICS.

To estimate the number of clusters, we propose to implement
the Elbow Rule [57]. We select the silhouette coefficient [46] as our
internal metric* to measure the quality of the clustering. Intuitively,
we expect that increasing the number of clusters will improve the
value of the silhouette coefficient since there are more parameters
to explain the data. However when we have more clusters than
the actual number of relations, the silhouette will most likely grow
more slowly as we can only subdivide actual relations. The Elbow
Rule tries to find the "elbow", which is the optimal trade-off between
a reasonable number of clusters and a high silhouette coefficient.
It can be done visually, but automatic methods are also available
[27]. With this estimation, we can use any clustering algorithm, in
particular k-means.

4 EXPERIMENTS

4.1 Datasets & Evaluation Metrics

To evaluate PromptORE we exploit labeled datasets, the labels
being only used during evaluation. The first dataset we choose is

4 A metric that does not rely on external data such as labels.
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FewRel [19]°. This dataset is composed of text taken from Wikipedia
pages that has been automatically annotated by aligning the text
with Wikidata triples (distant-supervision setting), then manually
checked for each instance. FewRel contains 80 relations, with 700
instances each (20 others relations are available in the test set,
which is kept private). Therefore the dataset is composed of 56 000
instances. One important fact is that the dataset contains at most
one instance for each pair of entities.

FewRel is a general domain dataset, but we also want to evaluate
PromptORE on more specific domains. Our second dataset is
FewRel NYT [14]°. This time, the text is taken from newspapers
articles of the New-York Times. It is also automatically annotated
using Wikidata, and manually checked. FewRel NYT contains 25
different relations, with 100 instances each.

Our third dataset is FewRel PubMed [14]°. The text comes from
PubMed, a database of biomedical literature. It is also automatically
annotated (this time with the UMLS knowledge base) and manually
checked. It is composed of 10 relations, with 100 instances each.

Traditional classification metrics such as accuracy, precision,
recall or f1-score cannot be used to evaluate and compare Prompt-
ORE’s performances as there is no direct link between our cluster
ids and the true relation ids. Therefore, similarly to previous works
[51, 63], we use three external clustering metrics: B® [2], V-measure
(V) [45] and Adjusted Rand Index (ARI) [23, 55]. They each take a
different point of view: ARI is based on pairwise similarity (enumer-
ating all pair of instances), B3 on one instance versus the dataset
and the V-measure on clusters.

ARI is adjusted for chance, meaning that a random clustering
will reliably lead to a score close to 0.

V-measure defines the notions of homogeneity and completeness
of clusters. A cluster is homogeneous if it contains only instances
of the same relation, and a cluster is complete if it contains every
instances of a relation. The V-measure corresponds to the harmonic
mean of homogeneity and completeness.

Finally, B® provides definitions for recall and precision, allowing
to compute a fl-score. V-measure tends to penalize more small
impurities in a pure cluster than impurities in a less pure cluster
where B3 has a more linear behavior [51].

4.2 Baselines

We compare PromptORE with the state-of-the-art (SOTA) ap-
proach SelfORE [21], and two previous approaches based on Vari-
ational Auto-Encoders (Etype+ [58] and UIE-PCNN [51]).

SelfORE encodes instances with BERT, clusters these embed-
dings with an adaptive clustering method to generate pseudo labels
that are finally used to train a classifier.

UIE-PCNN encodes instances with a Piecewise Convolutional
Neural Network (PCNN) [66], and uses a Variational Auto-Encoder
(VAE) to classify instances in an unsupervised way. Additionally
they propose two regularization losses (skewness and dispersion)
to fight against the VAE’s tendency to predict a single relation or a
uniform distribution. Since UIE-PCNN relies on PCNN, an older
embedding method, we propose to replace it with a BERT model
(similarly to [58]), and we call this method UIE-BERT.

5Data can be downloaded from: https://github.com/thunlp/FewRel.
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Etype+ shows that using only entity types to encode instances
provides better results than UIE-PCNN. They propose a simple typ-
ing schema for the entities: Organization, Person, Location, Miscella-
neous. We expect the performances to be lower on domain-specific
datasets (FewRel NYT and PubMed).

Finally, let us recall some metrics properties to interpret the
experimental results: if a model always predicts the most frequent
class V-measure and ARI will be equal to 0. If a model predicts a
random distribution, ARI will be close to 0 (as ARI is adjusted for
chance).

4.3 Implementation Details

All baselines are trained with the hyperparameter values deter-
mined by their authors. For SelfORE, we use their publicly avail-
able implementation, and for Etype+ and UIE-PCNN we use the
implementation of Tran et al. [58]. The baselines are trained know-
ing the correct number of relations k (i.e., 80 for FewRel, 25 for
FewRel NYT and 10 for FewRel PubMed).

For PromptORE, we suppose we do not know k, except in sec-
tion 5.1. Besides, we use the bert-base-uncased model to initialize
BERT’s weights. We also use a model with RoOBERTa embeddings
(using the roberta-base pretrained model). There are no hyper-
parameters to adjust.

We use the scikit-learn implementation of V-measure and
Adjusted Rand Index, and the Hu et al. [21] implementation of B3.

5 RESULTS
5.1 Comparison with Previous SOTA Models

In this section only, to allow a fairer comparison with previous
approaches, PromptORE knows k, the number of different rela-
tions, and a k-means clustering is used. Table 1 shows the results
of the models on our three datasets. PromptORE consistently
outperforms SelfORE, the previous state-of-the-art method, with
approximately 19% more in B3, 18% in V-measure and 19% in ARI on
FewRel. It represents a relative gain in performance of more than
40%. The performance gap is even more important with UIE-BERT,
UIE-PCNN and EType+. We observe similar conclusions with the
two other datasets.

When we look more closely, we notice that UIE-BERT [51] ob-
tains very poor results on all three datasets: it always predicts the
same relation. Strangely, the authors of [51] proposed two regular-
ization losses to avoid precisely this situation, but this problem with
UIE-PCNN/BERT is also observed by [58, 65]. We believe this is
due to the hyperparameter that controls the balance between clas-
sification and regularization losses, which needs to be fine-tuned
specifically for each dataset.

SelfORE has been evaluated on the FewRel dataset multiple
times [33, 67, 71], and it seems at first glance that the results ob-
tained by these papers are better than ours (with an F1 B> between
45-55% instead of 25-30%). However, in these cases SelfORE was
evaluated on a test set of FewRel with only 16 relations and 11 200 in-
stances [33]; or a subset of 1600 instances with 16 relations [67, 71].
Using the same sampling procedure, we were able to reproduce
their results; but we do not use this setting in our evaluation, as it
is a simpler task than FewRel with its 80 different relations.
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Finally, we notice a very small difference in performance between
BERT and RoBERTa embeddings with PromptORE. In practice
both PLMs are well suited to provide precise results, and we decide
to use BERT embeddings for the next parts of this paper.

Performance on domain specific datasets. BERT and more broadly
PLMs are usually pretrained on general domain data (e.g. Wikipe-
dia), and we can ask ourselves if that impacts performances on "out
of domain" datasets such as FewRel NYT and FewRel PubMed. We
can see in Table 1 that PromptORE does not see its results plum-
met. On the contrary, it still outperforms previous SOTA models by
a large margin. SelIfORE, which also relies on BERT embeddings,
does not see its performance deteriorate as well, which seems to
indicate BERT’s ability to encode tokens not seen before.

In general, the results are higher than with FewRel, but that is
explained by the fact that the two datasets contain less relations
and instances.

Finally, we notice that Etype+ predicts a single class on FewRel
PubMed (as V-measure and ARI touch zero). As we have stated
earlier, it is explained by the entity type schema, which is very
limited as there are no Person, Organization or Location entities in
this dataset.

Does PromptORE really extract relations? The core of Prompt-
ORE is its prompt P that is used by the Relation Encoder to embed
each instance. However, one can ask if BERT really uses the text of
the current instance to predict the missing token (and thus extracts
information from the sentence), or if it is only using its internal
knowledge, ignoring the current instance context. To answer this
question, we propose to create an empty prompt Py where we do
not input the current instance text. Its template is defined as:

Po(S,el,e2) = "[CLS] el [MASK] e2.[SEP]"

It is equivalent to P defined in eq. (1), except that we have removed
S.

The results are shown in Table 2. We can see that the perfor-
mance for all three metrics and three datasets are much lower
with Py compared to P, with an average gap of 15% in B, 14% in
V-measure and 15% in ARL Therefore, it shows that BERT really
benefits from the instance context to extract more precisely the re-
lation between the two entities. It is interesting to remark that even
without the instance text, PromptORE still surpasses SelfORE,
which clearly indicates that SelfORE fails to take full advantage of
BERT embeddings.

Alternative Prompts. As we have discussed in section 3.1, P is
not necessarily the best prompt, as more relations can be expressed
with a noun than with a verb. We computed PromptORE per-
formances with three alternative prompts: £;, which encourages
BERT to predict a noun, P, with the prefix proposed by [35], and
#; containing a prefix variant of P;. Results are shown in Table 2.

First, we notice that Pl’ provides better results than # in ARI,
but similar performances in V-measure and B for FewRel and
FewRel NYT. No improvement is observed with FewRel PubMed.
This result is interesting because we showed that fewer relations
can be expressed with a verb than with a noun, so we expected
a gap in favor of ;. For example FewRel relations instance_of,



PromptORE - A Novel Approach Towards Fully Unsupervised Relation Extraction

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Table 1: Results of PromptORE and previous SOTA models on three datasets. PromptORE knows the number of relations k.

B3 V-measure

Dataset | Model Prec. Rec. F1 | Hom. Comp. F1 ARI
UIE-PCNN [51] 520 678 589 | 211 216 213 | 4.86

UIE-BERT 125 100 247 | 0 00 0 0
| EType+ [58] 746 799 137 | 333 791 479 | 8.44
FewRel [19] - k=80 | ¢ |rORE [21] 244 363 292 | 504 566 532 | 244
PromptORE (RoBERTa) | 47.8 47.9 47.9 | 712 725 718 | 43.7
PromptORE (BERT) 487 488 488 | 71.0 727 718 | 434
UIE-PCNN [51] 731 271 115 | 958 158 119 | 3.09

UIE-BERT 400 100 777 | 0 00 0 0
.| EType+ [58] 110 926 196 | 230 849 362 | 7.82
FewReINYT [14] k=25 | ¢ 1tORE [21] 324 481 387 | 500 589 541 | 268
PromptORE (RoBERTa) | 62.6 653 639 | 757 781 768 | 57.3
PromptORE (BERT) 637 666 65.1| 765 795 78.0 | 56.9
UIE-PCNN [51] 144 452 219 | 103 192 135 | 7.23

UIE-BERT 100 100 182 | 0 00 0 0

_ | EType+ [58] 100 100 181 0 00 0 0
FewRel PubMed [14] k=10 | ¢ g 537 661 593 | 588 687  63.4 | 45.4
PromptORE (RoBERTa) | 73.7 732 73.5 | 76.5 77.2 769 | 68.1
PromptORE (BERT) 776 772 774 | 810 812 811|738

Table 2: Results of PromptORE with different prompts.
PromptORE is trained with the exact number of relations k.

Dataset ‘ Prompt ‘ B3 (F1) V (F1) ARI
PromptORE (P) 48.8 71.8 434

Po 33.8 574 288

FewRel Py 48.9 71.7 445

P, 494 724 463

P 50.5  73.0 477

PromptORE (P) 65.1 78.0  56.9

Po 51.3 65.7 41.6

FewRel NYT P/ 65.8 77.8  62.0
P 61.0 748  56.9

P 65.6 77.7  61.7

PromptORE (P) | 77.4 81.1 738

Po 62.0 66.2 531

FewRel PubMed P, 76.4 80.0 723
P, 760 800 729

P 77.4 81.1  73.1

competition_class, constellation or operating_system can-
not be expressed with a verb but are nonetheless correctly identified
with P. It seems that BERT is weakly impacted by the apparent
impossibility to predict a meaningful word.

In Table 2, SDZ’ and PS’ achieve higher performances than PI’ in
the majority of the cases, while their only difference with P/ is
the prefix (In this sentence or We deduce that). We can also see the
impact of prompt’s wording: at a first glance both prefixes seem to
convey the same idea, but their performances are different. In fact if
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we replace deduce by conclude in P; we obtain lower performances
(not shown in Table 2).

Finally, we notice that there is no consensus on the best prompt
from the four proposed ones: P, is the best for FewRel, P, for
FewRel NYT and # for FewRel PubMed. This highlights the impor-
tance to select and fine-tune prompts to maximize BERT’s perfor-
mances, which is indeed a major research area for prompt-based
methods [20, 25, 35, 49]. Under our fully unsupervised setting’s
goal, it is unfeasible to fine-tune the prompt due to the lack of
labeled data, therefore we decide to keep our original # for the
sake of fair results.

5.2 Clustering without knowing k

Up to now, PromptORE has access to k, the number of different
relations. However, as said in section 3.2, the most general setting
is when we do not know k. We identified two methods to cluster
our data without k: (1) OPTICS, a clustering algorithm based on
density, and (2) the Elbow Rule (to compute k an estimation of k)
with k-means clustering. The results are shown in Table 3.

To give technical details, we use the scikit-1learn implemen-
tation of OPTICS and k-means. To apply the Elbow Rule, we first
calculate multiple clusterings by varying the number of clusters.
For each of these clusterings we compute the silhouette coefficient.
We obtain the blue scatter plot of the Figure 2 for FewRel. As this
plot is rough, we approximate it thanks to a ridge regression with
a gaussian kernel (orange curve in Figure 2). In our case, this curve
has a maximum, it is therefore easy to locate the elbow. We noticed
the same curve shape with a maximum for FewRel NYT and FewRel
PubMed. Sometimes however, it is possible to observe a growing
curve, in which case automatic approaches [27] can be applied to
locate the elbow. We detect the elbow at k = 65 clusters for FewRel.
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Table 3: Results of PromptORE using different methods to
estimate k. "Ideal” represents results when k is provided.

Dataset | Method | k | B®(F1) V(F1) ARI

Ideal 80 | 488 718 434

FewRel | OPTICS | 571 | 108 85 0
Elbow | 65 | 495 712 422

Ideal | 25 | 651 780 569

FewRel NYT | OPTICS | 35 | 33.2 293 17
Elbow | 26 | 641 774 562

Ideal 10| 774 811 738

FewRel PubMed | OPTICS | 12 | 268 112 03
Ebow | 10 | 774 811 738

We obtain k = 26 for FewRel NYT and k = 10 for FewRel PubMed,
that is, values of k nearly identical to the real number of relations.

0.15
ridge reg.
];=65 ~+  silhouette
e
M0 A ﬁﬁ%ﬁw &
- TR
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005 |t H
i
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1
1
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0 100
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Figure 2: Results of the Elbow Rule on FewRel. Estimated
number of relations k is equal to 65.

Quantitative Results. OPTICS sets k at 571 (see Table 3), far from
the optimal k = 80 for FewRel. It translates into very poor per-
formances compared to PromptORE when we know k. We also
note that OPTICS is very slow during training (~ 6h compared
to 5min with k-means). On the other side, results are much more
satisfactory with the Elbow Rule with a slight decrease in ARI but
equivalent performances in B> and V-measure. Training time is also
much more reasonable with ~ 1h. We make the same conclusion
when we look at FewRel NYT and FewRel PubMed.

We can conclude that, at least on our three datasets, the Elbow
Rule is effective to find a correct estimation of k.

Finally, it is interesting to see that PromptORE with the Elbow
Rule widely surpasses previous SOTA approaches (Table 1), with a
gap of 15-25% in B® and V-measure and 17-30% in AR In our opin-
ion, we demonstrate that it is possible to remove the dependency on
all hyperparameters (including k) and still achieve state-of-the-art
results.

Qualitative Analysis of the Clustering. From Table 3, we know
that the Elbow Rule finds k = 65 instead of 80 for FewRel. It means
that the clustering cannot be ideal: some clusters must contain
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Figure 3: Confusion matrix between the true relations and
the clusters found by PromptORE with the Elbow Rule on
FewRel. The main relations of some clusters are highlighted.

multiple relations. The confusion matrix between the true relations
and the ones predicted by PromptORE is shown in Figure 3. It is
obviously not square as the number of clusters k is not equal to
the number of relations k. We reorganize the axes to find a logical
representation of the confusion matrix (as initially there is no link
between the relation ids and the cluster ids).

On this confusion matrix, we notice indeed that some clusters
are not pure: they contain multiple relations (e.g. clusters c-10, c-
18, ¢-28, c-29, ¢-30, c-31, c-49, or c-54). The main observation is
nevertheless that the matrix possesses a clear diagonal, meaning
that PromptORE is able to effectively distinguish the vast majority
of the relations, while training in a fully unsupervised setting.

We also see that clusters seems to be relatively complete: there
are seldom clusters sharing the same relations except for clusters
c-31 and c-40; c-39, c-49 and c-54.

As some clusters contain multiple relations, we find it interesting
to check whether the relations that compose each of these clusters
are semantically linked. We randomly sample four clusters that
contain multiple relations. Results are shown in Table 4. For these
four clusters, we can see that the relations are indeed semantically
close within a cluster:

o for cluster c-10 they are linked to language,
o for cluster c-18 to geographical location,

o for cluster c-31 to artistic creation,

o for cluster c-49 to family relationship.

Even though these clusters are not optimal from the FewRel an-
notation point of view, they are semantically coherent. In fact, we
could even argue that cluster c-10 makes more sense than the initial
labeling which divided this cluster in two relations.
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Table 4: Relation distributions that compose four randomly
sampled impure clusters.

Cluster ‘ True Relations

c-10 | language of film or TV show,
language of work or name

c-18 | mountain range, located in physical feature,
located in or next to body of water

c-31 screenwriter, director, after a work by,
characters, composer

c-49 sibling, father, child, mother,
spouse

In conclusion, this qualitative analysis shows that the combi-
nation of PromptORE with the Elbow Rule efficiently discovers
semantically consistent clusters, which are very close to true rela-
tions.

5.3 Analysis of £ Prompt Predictions

In section 5.1, we found a very little performance difference be-
tween # and P71, while the majority of relations cannot be writ-
ten using a verb. To go further, it would be interesting to check
which tokens/verbs seem to describe best the clusters identified by
PromptORE with . To do that, we use the relation embeddings
(computed by our Relation Encoder) and predict the masked tokens
(represented by [MASK]) with the MLM head of BERT. By iterating
for every instance located in one cluster, we can find the most fre-
quent tokens that seem to describe it. We apply this method on the
clusters identified by PromptORE and Elbow Rule (see Figure 3).
The results on three selected clusters are displayed in Table 5.

We observe that in most cases, the predicted names are not
clear enough to qualify the relation corresponding to the cluster.
Nevertheless, the names give clues to identify the general theme of
the relation (married indicates a family centered relation, borders
and surrounds a geographic topic).

Table 5 shows however the major limitation of #: when we
look at cluster c-49, spouse is represented by married, but sibling,
father, child and mother relations are not brought to light with
the predicted names. Indeed, these four relations cannot be writ-
ten using a single verb; by not finding satisfactory names, BERT
defaulted into predicting punctuation tokens. We reach the same
conclusion for cluster c-14, where BERT also predicted punctuation
tokens.

Finally, this observation gives us interesting insights on the
behavior of our Relation Encoder. Intuitively, we could think that
PromptORE would have poor results with relations that cannot be
written using a verb. On the contrary, we found that results were
close between P and P/ (Table 2). At the same time, we notice that
cluster c-2 (Table 5) is very pure, yet its most predicted name is "’
(a token that is furthermore shared among the two other clusters
of Table 5). In our opinion, it indicates that BERT is able to encode
a very expressive embedding of the current relation instance that
allows a precise clustering, but that cannot be translated into real
words. This is supported by the fact that PromptORE identified
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Table 5: Most frequent predicted tokens for three different
clusters identified by PromptORE for FewRel. True relations
composing these clusters are also displayed.

Cluster | Predicted | True relations
tokens
c-2 , 99%: platform
for other
supports
c-14 : 79%: contains administrative territory
borders 5%: located in administrative entity
, 3%: located in physical feature
surrounds | other
c-49 R 25%: sibling
. 21%: father
married 19%: child
18%: mother
17%: spouse

three different clusters with punctuation as their most frequent
tokens (Table 5). It comforts us in the idea that complex prompts
are not required to effectively represent a significant number of
relations. It does not undermine however the importance of prompt-
tuning: as showed in Table 2, prompts have an impact on model
performances.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce PromptORE, an unsupervised RE model.
Our proposed approach leverages and adapts the novel prompt-
tuning paradigm. Experiments on one general and two domain
specific datasets show that PromptORE surpasses previous state-
of-the-art methods, while being simpler and not needing hyperpa-
rameter tuning. On a secondary note, finding descriptive names for
the clusters is still an open question.

In the future, we plan to explore other clustering approaches with
a focus on Deep Clustering methods (e.g. [44]), and Hierarchical
Clustering models that leverage the hierarchical nature of relations.
We further envision to close the loop of knowledge extraction, that is,
benefiting from PromptORE’s ability to extract relations in order
to build a knowledge graph that can be used to further improve
PromptORE’s predictions.
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