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ABSTRACT The confusion matrix is a key tool for understanding and evaluating models in supervised
classification problems. Various matrices are proposed depending on the problem framework: single-label,
multi-label, or even soft-label restricted to probability distributions. However, most of these approaches
are not compatible with each other and lack theoretical justification. Leveraging optimal transport theory
and the principle of maximum entropy, we propose a unique confusion matrix applicable across single,
multi, and soft-label contexts. The Transport-based Confusion Matrix (TCM) extends the classic Confusion
Matrix (CM), being identical in the single-label context. TCM introduces a comprehensive, theory-supported
description of previously inaccessible errors, thereby enhancing the consistency and scope of machine
learning evaluation.

INDEX TERMS Classification, evaluation, machine learning, multi-label confusion matrix, optimal
transport, single-label confusion matrix, soft-label confusion matrix.

I. INTRODUCTION
In this introduction, we first describe the significance of
confusion matrices and explore the various frameworks that
require generalizing the classic Confusion Matrix (CM).
We then discuss the challenges that emerge from this
requirement. Next, we present our initial intuition and
introduce, through a practical example, the transport theory
that underpins our approach. Finally, we outline the process
for deriving transport-based matrices and emphasize the key
contributions of our work.

All relevant notations and concepts are listed in Table 1,
and the first occurrence of each concept is italicized.

A. CONFUSION MATRIX USEFULNESS
Confusion matrices provide a comprehensive understanding
of model errors by revealing interdependencies between
labeled and predicted classes. Understanding these error
patterns is crucial for the design, training, and optimization of
classifiers [1], [2]. Furthermore, CM allows the introduction
of such useful performance measures as precision, recall, and
the F1-score.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rossano Musca .

B. FRAMEWORKS
In supervised learning, single-label classification assigns
each instance to one class from a predefined set of
categories. In contrast, multi-label classification allows an
observation to be associated with multiple classes at the
same time. The soft-label context further extends this by
assigning non-negative real values to each class, indicating
the confidence, degree, or value of membership for each
class. This framework encompasses both single and multi-
label scenarios.

Multi-label and soft-label classification generate signifi-
cant research interest due to their wide range of applications,
including medical diagnosis [3], [4], [5], [6], emotion
recognition [7], [8], [9], as well as image and text classifi-
cation [10], [11], [12], [13], [14], [15], [16], [17], [18].

Notably, the soft-label framework has drawn attention
for its ability to preserve annotator disagreements in tasks
involving subjective judgments, such as sentiment analysis,
sarcasm detection, and offensive language identification [15],
[16], [17], [18]. Although learning with soft labels is less
common, it has been shown to improve model generalization,
robustness, and calibration, highlighting the importance of
soft labels in machine learning [10], [19].

Despite the increasing focus on these frameworks, there
remains a significant gap in developing a consistent confusion

181372

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-2717-608X
https://orcid.org/0000-0002-6439-9466
https://orcid.org/0000-0002-1218-8026
https://orcid.org/0000-0002-6620-7771
https://orcid.org/0000-0002-7544-1631


J. Erbani et al.: Confusion Matrices: A Unified Theory

TABLE 1. Notations and concepts.

matrix that is suitable for both multi and soft-label scenarios.
This gap represents a crucial challenge in enhancing model
understanding and evaluation.

C. DIFFICULTIES AND LIMITATIONS
Understanding errors in a multi-label scenario can be diffi-
cult. For instance, if the model predicts Apple, Lemon
while the actual label is Banana, Pear, it is unclear
whether Banana has been confused with Apple and Pear
with Lemon, or whether Pear has been confused with
Apple and Banana with Lemon, or if the error is more
complex. Additionally, the number of predicted classes can
differ from the number of actual classes. For example,
a prediction of Apple, Lemon might be associated with
the label Apple. Capturing such an error in a confusion
matrix is not straightforward: should Apple be considered
correctly recognized, with Lemon treated as an unrelated
error, or has the model only partially captured Apple,
mistakenly associating it with Lemon? If the latter, to what
extent does this confusion occur?

These difficulties are exacerbated in soft-label scenarios.
Consider a tweet classification problem with four topics:
Politics, Science, People, and Fake News. In this
case, each label is represented by a vector of size four, with

entries ranging between 0 and 1, indicating the degree to
which each topic is related to the text. For example, the model
might predict [1, 0, 0.5, 0.2] for a tweet predominantly about
Politics, with some correspondence to People and low
similarity to Fake News, while the label is [0.4, 1, 0, 0].
How can this pair label-prediction be interpreted to highlight
any dependencies between predicted and labeled classes?
So far, state-of-the-art confusion matrices cannot solve this
situation.

D. FROM SINGLE TO SOFT-LABEL CONFUSION MATRIX:
STARTING POINT
The single-label confusion matrix compares predictions with
labels to reveal the model’s behavior. To establish the average
behavior, CM aggregates the model’s behaviors across all
instances, resulting in a sum of contributions,

CM =

N∑
n=1

yn ⊗ ŷn, (1)

where labels and predictions are vectors in {0, 1}C . Each
contribution compares yn with ŷn, recording errors through
the matrix yn ⊗ ŷn.
Contributions can be regarded as instructions to transform

ŷn into yn. The ij term represents the quantity in entry j to be
shifted into entry i to obtain y from ŷ. In the case where i = j,
the quantity in i is shifted to i; thus, nothing happens. Two
simple examples are depicted in Fig. 1.

This view enables the generalization of the single-label
confusion matrix to broader frameworks. Instructions to
transform predictions into labels can be effectively for-
malized using transference plans, a key notion in optimal
transport theory, which is illustrated with an example in
subsection I-F. However, before delving into it, we have
to introduce the concept of measure, a prerequisite for
understanding transport theory.

E. MEASURE
The concept of a measure is a generalization and formaliza-
tion of length, area, volume, and other common notions such
as mass and probability of events [20]. Informally, a measure
µ is a function that assigns non-negative values to certain sets
and satisfies basic properties, such as assigning 0 to the empty
set (i.e.,µ(∅) = 0) and ensuring that themeasure of the union
of disjoint sets is the sum of their individual measures (i.e.,
µ(A ∪ B) = µ(A) + µ(B) with A and B two disjoint sets).

To apply transport theory, we interpret each label y (or
prediction ŷ) as a measure representing a collection of point
masses over the set of classes (see Susection III-B), which
can be visualized as a bar chart indexed by classes.

F. OPTIMAL TRANSPORT EXAMPLE
We present a concrete use case of optimal transport theory,
which can serve as a reference for subsequent discussions.
This example is a discrete version of the introductory example
provided by Villani [21].
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FIGURE 1. Bar charts represent two instances with classes A, B, C, and D: (ya, ŷa) in (a) and (b), and (yb, ŷb) in (e) and (f). Quantities predicted in class A
are shown with dotted bars, whereas those in B are circled. CM contributions of ya ⊗ ŷa and yb ⊗ ŷb appear in (d) and (h) and are interpreted as follows:
(d) move a quantity of 1 from B to A, and (h) leave a quantity of 1 in A. Their corresponding transformation appears in (c) and (g).

Suppose we have K piles of sand with a total volume
VK and L holes with a total volume VL . Additionally, let’s
assume VK equals VL . Our goal is to fill the holes with sand
by transporting the sand over the shortest possible distance.
A pile of sand can be spread over several holes.

Transportation theory formalizes this problem, aiming to
determine how to transport a measure µ to a measure ν,
defined respectively on some measure spaces X and Y while
minimizing a given cost function c : X ×Y → R≥0 ∪{+∞}.
Denoting s1, s2, . . . sK the volume of each pile of sand and
u1, u2, . . .uK their location, the measure µ on R2 is defined
by µ(uk ) = sk the volume of sand located in coordinates
uk ∈ R2 and µ null everywhere else. Similarly, denoting
h1, h2, . . .hL the volume of each hole and v1, v2, . . .vL their
location, ν(vl) = hl and ν null everywhere else. The cost
function c corresponds to the Euclidean distance.

A transference plan is a measure on the product space X ×

Y . In this case, it can be represented by a matrix π ∈ RK×L
≥0

with πkl the amount of sand coming from pile k and placed
in hole l. More precisely, the problem is written as follows:

argmin
T (µ,ν)

K∑
k=1

L∑
l=1

c(uk , vl)πkl (2)

where T (µ, ν) is the set of admissible transference plans
defined by:

T (µ, ν) = {π ∈ RK×L
≥0 :

L∑
l=1

πkl = µ(uk ),
K∑
k=1

πkl = ν(vl)}.

(3)

Considering plans among T (µ, ν) ensures that after the
operation, all the sand piles are empty and all the holes are
filled. In addition, the quantities of transported sand are non-
negative.

This problem is called the Kantorovich problem. For a
solution to exist, the total volume of sand VK must equal

the volume of the holes VL . When a solution exists, it is
not necessarily unique, for example, if there are some
equidistances between piles and holes. Solutions are called
optimal transference plans.

G. TRANSPORT-BASED CONFUSION MATRIX
The Transport-based Confusion Matrix extends the single-
label confusion matrix to multi-label and soft-label frame-
works by leveraging optimal transport theory. The procedure
for deriving TCM is outlined below.

For each instance (yn, ŷn) in the set of instances
(y1, ŷ1), . . . , (yN , ŷN ) do:
1) Interpret (yn, ŷn) as a pair of measures and solve the

associated Kantorovich problem.
2) If the solution is not unique, select the optimal

transference plan that maximizes entropy, denoted as
π∗(yn, ŷn). This specific transference plan is a square
matrix of size C which describes the model’s behavior
on the instance (yn, ŷn).

In line with the single-label confusion matrix approach,
TCM captures the model’s average behavior by aggregation:

TCM =

N∑
n=1

λ(yn, ŷn)π∗(yn, ŷn), (4)

where λ(yn, ŷn) ∈ R≥0 is the non-negativeweighting factor of
the n-th contribution. The complete definitions of π∗(yn, ŷn)
and λ(yn, ŷn) can be found in Subsection III-D Proposition 3
and III-F, respectivly.

H. CONTRIBUTIONS
We introduce the Transport-based ConfusionMatrix, with the
following key properties:

• Universality: It offers a single method for analyzing
model errors in single, multi, and soft-label frameworks.
Moreover, to the best of our knowledge, it is the only
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proposal in the soft-label framework that is not restricted
to probability distributions.

• Unification: It extends the classic confusion matrix,
remaining identical in the single-label context while
also being partially consistent with existing proposals,
thereby connecting apparently incompatible confusion
matrix approaches.

• Reliability and Interpretability: The approach is
grounded in well-established theories, specifically
optimal transport and the principle of maximum entropy.
Moreover, it relies on minimal assumptions, ensuring
highly reliable and interpretable results.

The Appendix includes theoretical proofs for the claims
made throughout the paper. The source code of TCM,
as well as that of the experiments, is available on
https://github.com/johan140391/TCM.

I. PAPER ORGANIZATION
The structure of the paper is as follows: Section II reviews
existing approaches, their limitations, and the objectives of
our proposal. Section III outlines the process for obtaining
TCM, provides an interpretation of the mathematical formu-
las of the matrix, and includes a simple example for famil-
iarization. Section IV establishes connections between TCM
and state-of-the-art matrices and identifies key properties
that TCM satisfies. Section V extends the traditional metrics
of Recall, Precision, F1-score, and Accuracy. Section VI
offers guidelines for reading confusion matrices in general,
especially criteria for distinguishing different types of model
errors. Section VII describes the experimental setup, while
Section VIII presents a comparative analysis of TCM against
the various confusion matrices in the literature. Section IX
presents a case study with real-world data. Section X offers a
critical discussion of our approach, and Section XI concludes
the paper.

II. RELATED WORKS
This section reviews existing approaches and their limitations
in both multi-label and soft-label frameworks, concluding
with a summary of the limitations and the objectives of our
proposal.

A. MULTI-LABEL FRAMEWORK
The Scikit-learn Python library [22] provides a method for
evaluating errors in a multi-label framework. This algorithm
calculates true positives, false positives, true negatives, and
false negatives for each class, resulting in as many CMs as
there are classes. However, as discussed in [2] and [23], this
approach is insufficient to accurately describe the model’s
behavior, as it relies on class-wise analysis.

Several papers, including [1], [2], and [23], intro-
duce multi-label confusion matrices. Krstinić, Braović,
Šerić, et al. [1] proposes four formulas to compute contribu-
tions. Each formula addresses a specific situation (e.g., too
many or too few predicted classes; see Section IV for more

details). Similarly, [23] presents three formulas, yielding
experimentally comparable results [24]. As pointed out in [2],
using a single global formula would enhance consistency.
Krstinić et al. [2] aim to recover the traditional precision and
recall scores, resulting in two distinct confusion matrices,
one for each score. However, the authors do not specify
how to interpret their matrices. For instance, when evaluating
confusion between class i and class j, it is unclear whether
the ij entry should be taken from the recall or precision
matrix, whereas these entries can differ significantly (see
Section VIII). Moreover, recall and precision are class-wise
metrics that do not consider all classes present in the labels
and predictions. Placing them on the diagonal is questionable,
as a multi-label confusion matrix should provide insights
beyond class-wise scores, revealing relationships between
classes even when considering only diagonal values. A key
concern with the approaches proposed in [1], [2], and [23] is
the limited justification behind their proposals.

To identify confusion in a hierarchical and multi-label
scenario, [25] suggests a matrix based on multivariate
probability distributions. The authors also use their matrix
in non-hierarchical multi-label problems. Errors are analyzed
on a group scale: confusing Apple with Banana; Lemon
with Pear; and Apple, Lemon with Banana, Pear;
are assumed to be three confusion types, whereas intuitively,
two types are expected, Apple with Banana and Lemon
with Pear. This results in an exponential increase in matrix
size as the number of classes grows [25].

B. SOFT-LABEL FRAMEWORK RESTRICTED TO
PROBABILITY
The authors of [26] and [27] propose matrices for soft-label
scenarios restricted to probability distributions (i.e., the
sum of the labels or predictions must be equal to 1).
Binaghi et al. [26] introduce a matrix based on fuzzy set
theory. Their method yields counterintuitive results, as a
perfect prediction could produce a non-diagonal matrix [28].

The paper by Silván-Cárdenas and Wang [27] in the
geographic information science field suggests a method
for comparing terrestrial images. Each pixel in the images
belongs to certain classes, with one image serving as the
reference and the other as a comparison. Within the machine
learning framework, one pixel in the reference image is
considered the ground truth, while the corresponding pixel
in the comparison image is the model’s prediction. Various
operators exist for soft pixel classification according to
pixel ontology [28]. Some operators use fuzzy logic, while
others rely on pixel-overlapping arguments. The authors
introduce composite operators to determine theminimum and
maximum sub-pixel class overlap, resulting in a matrix with
interval entries. In each entry ij, the lower (respectively upper)
bound corresponds to the minimum confusion of i with j
(respectively maximum). To facilitate the reading, the authors
propose to represent each entry by the interval center and the
interval half-width, i.e., an entry of the form [a, b] becomes
(a+ b)/2 ± (b− a)/2.
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C. CONCLUSION
Existing solutions appear incompatible. Some lack justi-
fication, while others lose the familiar structure of the
confusion matrix, making it difficult to assess the model’s
behavior accurately. Furthermore, no method simultaneously
integrates single, multi, and soft-label frameworks, resulting
in inconsistencies in evaluation systems. The main state-of-
the-art approaches discussed in this paper are summarized in
Table 2.

To address these issues, we propose evaluating confusion
using optimal transport and the principle of maximum
entropy. This method aims to preserve as much model
behavior information as possible from instances while avoid-
ing uncertain assumptions. To the best of our knowledge,
this approach is unexplored and promises to provide a
more comprehensive and interpretable evaluation of model
performance.

III. TRANSPORT BASED CONFUSION MATRIX
This section outlines the process for obtaining TCM.We start
by describing the Kantorovich problem relevant to our
context, along with the appropriate cost function, and then
present the solution. Next, we offer a concrete interpretation
of the mathematical formulas used in TCM, followed by an
explanation of the weighting factor. Finally, we conclude with
a simple example to help understanding.

To simplify the notation, when there is no ambiguity,
we will omit the index n and refer to an instance as y and
ŷ rather than yn and ŷn.

A. STARTING POINT
A set of instructions for transforming predictions into labels,
such as ‘‘this portion of ŷ is correctly classified, but this part
assigned to class j should belong to class i,’’ provides valuable
insights for analyzing model behavior. This is also a way of
interpreting the contributions of the single-label confusion
matrix, as discussed in the introduction.

To derive these instructions, we employ optimal transport
theory. This requires defining a relevant Kantorovich problem
for our context.

B. KANTOROVICH PROBLEM
We interpret each instance (y, ŷ) as a pair of measures.
Specifically, the label y (and similarly the prediction ŷ) is
viewed as a weighted sum of Dirac measures over the set of
classes.1

For a solution to exist, it is necessary that y and ŷ possess
the same norm, ∥y∥1 = ∥ŷ∥1. However, this condition
is generally unmet in the multi or soft-label framework,
as too many or too few classes can be predicted. Therefore,
we propose comparing normalized instances, y/∥y∥1 and

1Let A = {a1, . . . , aC } be the set of classes, P(A) the power set of A, and
δai the Dirac measure concentrated on class ai. Then, a vector v in RC

≥0 is

mapped to the measure
∑C

i=1 viδai on the measurable space (A,P(A)).

ŷ/∥ŷ∥1, resulting in a proportional comparison of labels and
predictions. More details are provided in Subsection X-A.
The Kantorovich problem is defined as:

argmin
T (y,ŷ)

C∑
i,j=1

c (i, j) πij (5)

With T (y, ŷ) a set of matrices defined by:

T (y, ŷ) =

π ∈ RC×C
≥0 :

C∑
j=1

πij =
yi

∥y∥1
,

C∑
i=1

πij =
ŷj

∥ŷ∥1


(6)

To complete the description of this problem, we need to
define the cost function.

C. COST FUNCTION
The cost function indicates the cost of transporting a unit of
mass from one location to another [21]. A low cost between
two locations facilitates mass transfer between them, whereas
a high cost hinders it.

In the confusion matrix context, and for a given model,
the cost function represents the interclass dissimilarities. For
example, with a classifier that systematically confuses A and
B but never A and C, a suitable cost function would assign
c(A,B) = 0 and c(A,C) = ∞.
However, based on labels and predictions alone, this

information is inaccessible with any certainty. Nevertheless,
the following assumption is reliable: a given class A is very
similar to itself (as it is the same class) but different from
other classes. This qualitative information is captured by the
discrete metric, which assigns a value of 0 when the classes
are the same and 1 when the classes are different. Thus, for
all classes i and j, c(i, j) = 0 if i = j and c(i, j) = 1 if i ̸= j.

D. SOLUTION
The following two propositions provide the solutions to our
Kantorovich problem, identifying all optimal transference
plans and demonstrating that this set typically contains an
infinite number of solutions. Let T opt(y, ŷ) ⊂ T (y, ŷ) denote
the solution set.

Proposition 1. Any matrix π ∈ T (y, ŷ) is an optimal
transference plan if, and only if, its diagonal is defined by:

πii = min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) (7)

for i = 1, 2, . . .C.
Proposition 2. T opt(y, ŷ) contains a single optimal

transference plan if, and only if, there is at most one
overestimated (i.e., yk

∥y∥1
<

ŷk
∥ŷ∥1

) or underestimated (i.e.,
ŷk

∥ŷ∥1
<

yk
∥y∥1

) class. Otherwise, there is an infinite number
of optimal transference plans.

Consequently, T opt(y, ŷ) always contains a single plan
when C = 2 or 3.

Generally, more than one optimal transference plan exist.
We propose choosing the one that maximizes entropy. This
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TABLE 2. Overview of state-of-the-art confusion matrices and TCM in single-label, multi-label, soft-label restricted to probability distributions, and
soft-label frameworks.

choice is justified because transference plans are probability
measures, which allows us to apply the principle of maximum
entropy [29]: when information is lacking but it is necessary
to infer a distribution, wemust choose the one that maximizes
entropy while respecting the partial information available.
This approach provides the least biased estimate possible
given the incomplete information.

Proposition 3. There is only one transference plan in
T opt(y, ŷ) that maximizes entropy, and it is defined by:

D = diag
(
min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)
)

D =

(
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)
)

⊗

(
ŷ

∥ŷ∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)
)

∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

π∗(y, ŷ) = D+ D. (8)

Continuous extension makes D a zero matrix when y = ŷ.
There are several key points to consider regarding this

result. Firstly, if a prediction is perfectly correct, meaning
y = ŷ, the denominator of D becomes zero. In the Appendix,
we demonstrate that as the prediction gets closer to the
label, the entries of the matrix D decrease to 0. Specifically,
∥y − ŷ∥1 → 0 implies D → 0C , where 0C denotes the zero
matrix of size C . Thus,

π∗(y, ŷ) =

{
D if y = ŷ
D+ D otherwise.

(9)

These equalities are summarized in Proposition 3 through the
mathematical concept of continuous extension.

Secondly, when T opt(y, ŷ) contains only one single plan,
the constraints on diagonal terms set by Proposition 1 directly
lead to the formula (8). Therefore, (8) can be used without
addressing whether one or multiple optimal transference
plans exist.

Thirdly, the plan π∗(y, ŷ) corresponds to the distribution
that is closest to the uniform distribution, considering the
constraints imposed by T opt(y, ŷ). This follows directly from
the choice to maximize entropy.

E. INTERPRETATION
This transformation plan π∗(y, ŷ) has a concrete interpreta-
tion. To explain it, we introduce the function f .

Definition 1. Let D be the set of non-negative vectors of
size C with the same norm:

D = {(u, v) : u ∈ RC
≥0, v ∈ RC

≥0, and ∥u∥1 = ∥v∥1}, (10)

where the vector v represents an approximation of the vector
u. Let f : D → MC (R≥0) be a function defined as follow:

f (u, v)ii =

(
common quantities between ui and vi

)
= min(ui, vi) for i = 1 . . .C (11)

Additional vocabulary is required for off-diagonal entries.
An entry i is underestimated if vi < ui; in this case, the deficit
is ui − vi, otherwise 0. Let u′

i be this missing quantity in i.
Similarly, an entry j is overestimated if uj < vj; in this case,
the excess quantity is vj−uj, otherwise 0. Let v′j be this excess
quantity in j.

f (u, v)ij =

(
deficit in i

)(
share of excess quantity in j

)
= u′

i ∗
v′j∑C
k=1 v

′
k

for i, j = 1 . . .C, i ̸= j (12)

Since the equality
∑C

k=1 u
′
k =

∑C
k=1 v

′
k holds (according to

Lemma 1 in Appendix Section XI), the entry f (u, v)ij is also:

f (u, v)ij =

(
share of deficit quantity in i

)(
excess in j

)
=

u′
i∑C

k=1 u
′
k

∗ v′j (13)

Each entry of the matrix f (u, v) has a clear meaning. This
interpretation aligns with that of the matrix π∗(y, ŷ).

Proposition 4. The following equality holds:

π∗(y, ŷ) = f (
y

∥y∥1
,

ŷ
∥ŷ∥1

). (14)

The diagonal entries of π∗(y, ŷ) represent the common
quantities between ŷ/∥ŷ∥1 and y/∥y∥1. In contrast, the
off-diagonal entries ij are the product of the missing quantity
in i and the excess quantity in j, divided by the sum of all
excess or deficit quantities.

In conclusion, beyond its theoretical justification, π∗(y, ŷ)
is easily interpretable.
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F. WEIGHTING FACTOR
In a multi-label context, if an image contains both Apple
and Lemon, it might be preferable for its contribution to
count twice as much as an image containing only Apple.
However, by design, all TCM contributions have the same
importance since the entries of each contribution sum to 1:∑C

i,j=1 π∗(y, ŷ)ij = 1.
To address this, we propose adding a weighting factor

formalized by the function λ : RC
≥0 × RC

≥0 → R≥0.
The coefficient λ(y, ŷ) represents the contribution weight
associated with the instance y and ŷ. For example, the
definition of λ could be:

• λ : y, ŷ 7→ 1, all contributions are equally important.
• λ : y, ŷ 7→ ∥y∥1, the more classes in a label,
the more important its contribution is. An observation
labeled Apple, Lemon contributes twice as much as
an observation labeled Apple.

• λ : y, ŷ 7→ ∥ŷ∥1, the more classes in a prediction,
the more important its contribution is. An observation
predicted as Apple, Lemon contributes twice as
much as an observation predicted as Apple.

The direct interpretation of weighted TCM is that the
confusion matrix results from a sum of contributions, with
their importance varying based on the chosen weighting.
A particular property of f (see Subsection III-E Definition 1)
enables a better interpretation.

Proposition 5. The function f is homogeneous, meaning
f (αu, αv) = αf (u, v) for any positive real number α.

According to Proposition 4 and Proposition 5, the follow-
ing equalities hold:

λ(y, ŷ)π∗(y, ŷ) = λ(y, ŷ)f (
y

∥y∥1
,

ŷ
∥ŷ∥1

)

= f (λ(y, ŷ)
y

∥y∥1
, λ(y, ŷ)

ŷ
∥ŷ∥1

)

=


f (y, ŷ

∥y∥1
∥ŷ∥1

) if λ(y, ŷ) = ∥y∥1

f (y
∥ŷ∥1
∥y∥1

, ŷ) if λ(y, ŷ) = ∥ŷ∥1
(15)

Finally, TCM can be understood as a sum of unweighted
contributions:

N∑
n=1

f (λ(yn, ŷn)
yn

∥yn∥1
, λ(yn, ŷn)

ŷn

∥ŷn∥1
), (16)

where each contribution is a matrix comparing a pair of
vectors:

(
yn

∥yn∥1
,

ŷn

∥ŷn∥1
), (yn, ŷn

∥yn∥1
∥ŷn∥1

), or (yn
∥ŷn∥1
∥yn∥1

, ŷn) (17)

depending on the chosen definition of λ. According to the
definition of f , the diagonal terms correspond to the vector
overlaps, and the non-diagonal entries ij to the product of the
underestimation in i and the overestimation in j, normalized
by the total of all the overestimations (or underestimations).

Finally, no weighting is neutral, each having a specific
meaning. Therefore, this parameter must be considered when

analyzing results given by TCM. Several matrices with
different weightings can be plotted to gain a deeper model’s
understanding.

G. SIMPLE EXAMPLE
This subsection aims to familiarize readers with TCM
through a soft-label example illustrated in Fig. 2.
Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) be a dataset where xi

are the observations and yi the labels. The labels are vectors
in R4

≥0 representing classes A, B, C, and D. Additionally, the
model performs the predictions ŷ1, ŷ2, ŷ3, and ŷ4. In Fig. 2, the
first row (subfigures (a) to (d)) is linked to instance one, the
second row (subfigures (e) to (h)) to instance two, the third
row (subfigures (i) to (l)) to instance three, and the fourth row
(subfigures (m) to (p)) to instance four.

The following proposition highlights the conditions under
which the entries of an optimal transformation plan are non-
zero:

Proposition 6. Given an instance (y, ŷ), its contribution
π∗(y, ŷ) has a zero diagonal if, and only if, no common
quantity exists. Moreover, entry ij is non-zero if, and only if,
class i is underestimated (i.e., ŷi/∥ŷ∥1 < yi/∥y∥1) and class
j overestimated (i.e., yj/∥y∥1 < ŷj/∥ŷ∥1).
In the instance (y1, ŷ1), A and C are predicted, whereas the

expected class is B, so all predicted quantities are in excess.
Since there is no common quantity between y1 and ŷ1, the
diagonal of π∗(y1, ŷ1) is zero. Class B is underestimated,
whereas classes A and C are overestimated. As a result,
only the entries BA and BC are non-zero, indicating that the
predicted quantities must be shifted to B. Since C is predicted
twice as much as A, the quantity coming from C is twice that
coming from A. Formally, entry BA is equal to,

(
deficit in B

)(
share of excess quantity in A

)
= 1

1/3
1/3 + 2/3

= 1/3. (18)

Similarly, entry BC is equal to,

(
deficit in B

)(
share of excess quantity in C

)
= 1

2/3
1/3 + 2/3

= 2/3. (19)

In the instance (y2, ŷ2), A and B are predicted, whereas
the expected classes are C and D, so all predicted quantities
are in excess. There is no common quantity, so the diagonal
of π∗(y2, ŷ2) is zero. Classes C and D are underestimated,
whereas A and B are overestimated. As a result, only the
entries CA, CB, DA, and DB are non-zero. In the label, C is
twice as large as D. Therefore, the transference plan indicates
that the predicted quantities to be shifted to C are twice those
to be shifted to D. Additionally, the quantities predicted in A
and B are identical, implying that the quantities coming from
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A and B are identical. Formally, entry CA is equal to entry CB:(
deficit in C

)(
share of excess quantity in A

)
=

(
deficit in C

)(
share of excess quantity in B

)
= 2/3

2/4
2/4 + 2/4

= 1/3. (20)

Entry DA is equal to entry DB:(
deficit in D

)(
share of excess quantity in A

)
=

(
deficit in D

)(
share of excess quantity in B

)
= 1/3

2/4
2/4 + 2/4

= 1/6. (21)

In the instance (y3, ŷ3), B, C, and D are predicted, whereas
the expected classes are A and C. The common quantity
in C implies that the diagonal entry C is non-zero. Class
A is underestimated, whereas classes B, C, and D are
overestimated. As a result, AB, AC, and AD are non-zero. The
excess quantities in A, B, and C are identical. Consequently,
the transference plan indicates that the predicted excess
quantities to be shifted to A are equal. Formally, the diagonal
entry for C equals:(

common quantities in C
)

= min
(
1
4
,
2
4

)
=

1
4
. (22)

The entries AB, AC, and AD are equal to:(
deficit in A

)(
share of excess quantity in B

)
=

(
deficit in A

)(
share of excess quantity in C

)
=

(
deficit in A

)(
share of excess quantity in D

)
= 3/4

1/4
1/4 + 1/4 + 1/4

= 1/4. (23)

In the instance (y4, ŷ4), A, C, and D are predicted, whereas
the expected classes are A and B. The common quantity in
A implies that the diagonal entry for A is non-zero. A and
B are underestimated, whereas C and D are overestimated.
As a result, the entries AC, AD, BC, and BD are non-zero. The
underestimation of A is greater than that of B. Consequently,
the transference plan indicates that A receives more quantity
from C and D than B. The excess quantity in D is greater than
the one in C. Therefore, the quantities to be shifted from D are
greater than those from C. Formally, the diagonal entry for A
equals:(

common quantities in A
)

= min
(
3
4
,
3
8

)
=

3
8
. (24)

Entry AC equals:(
deficit in A

)(
share of excess quantity in C

)
= 3/8

2/8
2/8 + 3/8

= 3/20. (25)

Entry AD equals:(
deficit in A

)(
share of excess quantity in D

)
= 3/8

3/8
2/8 + 3/8

= 9/40. (26)

Entry BC equals:(
deficit in B

)(
share of excess quantity in C

)
= 1/4

2/8
2/8 + 3/8

= 1/10. (27)

Entry BD equals:(
deficit in B

)(
share of excess quantity in D

)
= 1/4

3/8
2/8 + 3/8

= 3/20. (28)

According to (4) and Subsection III-F, to obtain the
unweighted TCM,where λ : y, ŷ 7→ 1, the contributions from
these four instances are summed as

π∗(y1, ŷ1) + π∗(y2, ŷ2) + π∗(y3, ŷ3) + π∗(y4, ŷ4). (29)

Considering the weighting λ : y, ŷ 7→ ∥y∥1, the label-
weighted TCM is

1π∗(y1, ŷ1) + 3π∗(y2, ŷ2)

+ 4π∗(y3, ŷ3) + 4π∗(y4, ŷ4) (30)

Finally, considering the weighting λ : y, ŷ 7→ ∥ŷ∥1, the
prediction-weighted TCM is

3π∗(y1, ŷ1) + 4π∗(y2, ŷ2)

+ 4π∗(y3, ŷ3) + 8π∗(y4, ŷ4). (31)

H. CONCLUSION
We regarded the contributions of the single-label confusion
matrix as instructions for transforming predictions into labels.
This view allowed us to generalize the confusion matrix to
multi-label and soft-label frameworks using optimal transport
theory.

Specifically, the TCM contributions correspond to solving
a Kantorovich problem characterized by a cost function that
assumes intra-class similarity and inter-class dissimilarity.
These broader frameworks often involve multiple optimal
transference plans, and we propose selecting the one that
maximizes entropy, following the principle of maximum
entropy.

We provide an analytical solution ensuring scalability.
For each instance, we compute the matrix that solves our
optimization problem, and by summing these matrices,
we capture the model’s overall behavior. The sum of
contributions can be weighted based, for example, on the
quantity of classes in the label or prediction.

In addition to the theoretical results, we provide a concrete
interpretation of the contributions. We also demonstrate
that the weighted sum offers the same interpretation as the
unweighted sum, differing only in the initial pair of vectors
considered.
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FIGURE 2. Four instances (y1, ŷ1), (y2, ŷ2), (y3, ŷ3), and (y4, ŷ4), and their contributions π∗(y1, ŷ1), π∗(y2, ŷ2), π∗(y3, ŷ3), and π∗(y4, ŷ4) are shown.
The classes are A, B, C, and D. Labels and predictions are depicted using bar charts. Quantities predicted in class A are shown with dotted bars, circled in
B, hatched in C, and crossed in D. The contribution (d) is interpreted as follows: move a quantity of 1/3 from A to B and of 2/3 from C to B. The
contributions (h), (l), and (p) are interpreted in the same way.

IV. STATE-OF-THE-ART CONNECTIONS
This section explores the connections between TCM, CM,
MLCM [1], and SCM [27]. We first point out the common
aspects of these approaches, then describe the key properties
confusion matrices should have.

A. TCM: TOWARDS A UNIFIED FRAMEWORK
We will demonstrate how TCM unifies several propositions
under a common theoretical framework.

The assertion that TCM extends CM is based on the
following proposition:

Proposition 7. In the single-label framework, TCM and
CM are identical.

Other state-of-the-art matrices, such as the MLCM and
SCM, also exhibit this property.

To establish contributions of the multi-label confusion
matrix, Krstinić, Braović, Šerić, et al. [1] propose MLCM
and distinguish four cases, each associated with a specific
formula. Considering an instance y and ŷ, let Y be the set of

present classes in y and Ŷ be the set of predicted classes in ŷ.
The four cases are: (i) Y = Ŷ , (ii) Y & Ŷ , (iii) Ŷ & Y , and
(iv) None of the previous cases.

Proposition 8. In case (i), (ii), and (iii)MLCM and TCM
weighted by λ(y, ŷ) = ∥y∥1 produce identical contributions.
Our formula in case (iv) is preferable as it derives from

a single, theoretically grounded expression. In contrast, the
formula in [1] is specifically constructed for case (iv) without
concrete theoretical justification.

In the soft-label framework restricted to probability,
Silván-Cárdenas and Wang [27] presents SCM, a matrix with
interval entries. While optimal transport isn’t mentioned,
the practical interpretation of the confusion phenomenon
is quite similar. Our approach allows for the computa-
tion of SCM contributions, as outlined in the following
proposition:

Proposition 9. Contribution in SCM can be computed as
follows: for each entry ij, select π and π in T opt(y, ŷ) such
that π ij ≤ πij ≤ π ij for all π ∈ T opt(y, ŷ), then define entry
ij as [π ij, π ij].
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Consequently, in a soft-label framework restricted to
probability distributions, TCM entries are systematically
included within SCM intervals. Each SCM entry ij represents
the worst and best possible confusion scenario. This approach
provides a pairwise description of errors, as the extreme
elements π ij and π ij are selected for each pair of classes.
In contrast, our proposal offers a more global description
by selecting a single element from T opt(y, ŷ), denoted as
π∗(y, ŷ), which represents the least biased solution according
to the principle of maximum entropy, while considering
all classes simultaneously. We should also point out that
π∗(y, ŷ)ij is generally not the center of the interval

[
π ij, π ij

]
.

B. DESIRABLE PROPERTIES
We establish that TCM fulfills several important properties.

In the search for fundamental properties to extend the
confusion matrix to soft classifications, it is suggested that
contributions should fulfill two characteristics [27]:

• Diagonalization: The matrix should be diagonal if, and
only if, the assessed data matches perfectly the reference
data.

• Marginal sums: Row and column sums should align with
the given instance. Specifically, for an instance (y, ŷ)
and its corresponding contribution M , the conditions∑C

k=1Mik = yi and
∑C

k=1Mkj = ŷj should hold for
all i and j.

The first property is desirable to identify perfect match
situations, while the second is desirable for deriving perfor-
mance indicators consistent with label and prediction entries,
increasing their interpretability [27].

The following proposition demonstrates that TCM satisfies
these properties:

Proposition 10. Considering normalized instance, TCM
fulfills both the diagonalization and marginal sums proper-
ties.

In contrast, other state-of-the-art matrices do not meet
these two criteria. In particular, SCM, with its interval entries,
does not satisfy the marginal sums, whether we consider the
lower bound, the upper bound, or the center of the interval
entries [27].

C. CONCLUSION
In summary, TCM serves as a unifying framework, align-
ing existing approaches from single-label, multi-label, and
soft-label classifications within a single theoretical paradigm.

Furthermore, unlike the other confusion matrices in our
comparison, TCMpossesses key properties, such as diagonal-
ization and marginal sums, which enhance its interpretability.

V. METRICS
This section proposes, in accordance with our approach,
a generalization of Recall, Precision, F1-score, and Accuracy
to multi-label and soft-label contexts. To achieve this,
we must extend the definitions of True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN).

We first present these concepts in the single-label case for a
given class k before introducing a broader generalization.

A. TRUE POSITIVE, FALSE POSITIVE, TRUE NEGATIVE, AND
FALSE NEGATIVE
In the single-label context, the standard definitions for correct
and incorrect classifications are as follows:

• TP: An observation that belongs to class k and is
correctly classified as such by themodel. It indicates that
class k is present and has been detected as present.

• FP: An observation that belongs to a class l ̸= k but is
mistakenly classified as class k . This reflects that class
k is absent but has been incorrectly detected as present.

• TN: An observation belonging to class l ̸= k that is
recognized as belonging to a class m ̸= k (regardless
of whether l = m). It indicates that class k is absent and
has been correctly detected as absent.

• FN: An observation belongs to class k but is incorrectly
classified as class m ̸= k . This indicates that class k is
present but has been incorrectly detected as absent.

To generalize these concepts for multi-label and soft-label
classification, we extend these concepts from binary class to
continuous quantities reflecting class memberships.
Definition 2. Let y and ŷ be an instance, and let k be

a class. In line with our approach, we consider normalized
vectors.
Let TPk be the quantity of class k present in both the label

and the prediction:

TPk = min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) (32)

Let FPk be the quantity of class k present in the prediction
but absent from the label. In other words, the overestimation
of class k:

FPk =
ŷk

∥ŷ∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
) (33)

Let TNk be the quantities predicted in the classes l ̸=

k that correctly exclude class k. This is calculated by
summing the predictions outside class k and subtracting any
underestimation of class k (which may be zero). The resulting
formula is:

TNk =

C∑
l=1,l ̸=k

ŷl
∥ŷ∥1

−

(
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
)
)

= 1 −
ŷk

∥ŷ∥1
−

yk
∥y∥1

+ min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) (34)

Let FNk be the quantity of class k present in the
label but absent from the prediction. In other words, the
underestimation of class k:

FNk =
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
) (35)
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It is straightforward to see that previous values can be
directly computed with π∗(y, ŷ):

TPk = π∗(y, ŷ)kk FNk =

∑C

j=1,j̸=k
π∗(y, ŷ)kj

TNk =

∑C

i,j=1, i,j̸=k
π∗(y, ŷ)ij FPk =

∑C

i=1,i̸=k
π∗(y, ŷ)ik

(36)

Interestingly, these formulas align with the single-label
confusion matrix: TP for class k corresponds to the diagonal
entry k , FN to the sum of off-diagonal entries in row k , TN to
the sum of all entries outside row and column k , and FP to the
sum of off-diagonal entries in column k .

B. RECALL, PRECISION, F1-SCORE, AND ACCURACY
We use previous definitions to extend traditional metrics.

Definition 3. Considering the weighting function λ, the
Recall, Precision, F1-score, and Accuracy are defined as:

Recallk =

∑N
n=1 λ(yn, ŷn) TPnk∑N

n=1 λ(yn, ŷn)
(
TPnk +FNn

k

) , (37)

Precisionk =

∑N
n=1 λ(yn, ŷn) TPnk∑N

n=1 λ(yn, ŷn)
(
TPnk +FPnk

) , (38)

F1k = 2
Precisionk ∗Recallk
Precisionk +Recallk

, (39)

Accuracy =

∑N
n=1 λ(yn, ŷn)

∑C
k=1 TP

n
k∑N

n=1 λ(yn, ŷn)
, (40)

where the superscript n denotes quantities computed for the
instance n.

We can immediately see that the above metrics can be
computed with TCM, in particular,

Recallk =
TCMkk∑C
j=1 TCMkj

, (41)

Precisionk =
TCMkk∑C
i=1 TCMik

, (42)

Accuracy =

∑C
k=1 TCMkk∑C
i,j=1 TCMij

. (43)

Again, these formulas align with the single-label confusion
matrix.

C. CONCLUSION
In summary, we propose a generalization of widely used
metrics that can be computed directly from TCM. Moreover,
the derived formulas are analogous to those in the single-label
case, enhancing the consistency of our approach.

VI. GUIDELINES FOR READING
This section provides useful guidelines for interpreting the
confusion matrix, especially when dealing with imbalanced
datasets. These guidelines focus on ordering classes when
plotting the matrix and normalization.

Typically, the confusion matrix is plotted using the test
set [30] to evaluate the model’s performance while the
model is trained on the training set. The distribution of
classes in both the training and test datasets significantly
impacts the values in the confusion matrix. To illustrate this,
we consider a simple scenario involving a standard neural
network learning process. This process does not include any
particular strategies for handling rare or specific classes in the
training set, such as sampling techniques or loss weighting.

A. TEST AND TRAINING EFFECT
This subsection introduces the concepts of test and training
effects, leading to recommendations for plotting confusion
matrices.

The classesmost prevalent in the test set generate rowswith
higher overall values, as the model is tested more frequently
on these classes, making more errors and correct predictions.
The extreme case occurs when only one class is present in
the test set, leading to only one non-zero row in the confusion
matrix. We refer to this phenomenon as the test effect. Table 3
(a) illustrates this phenomenon.

Additionally, the classes most prevalent in the training
set generate columns with higher overall values, as errors
from these prevalent classes contribute more to the loss value
during the training process [31]. The extreme case occurs
when only one class is predicted, leading to only one non-zero
column in the confusion matrix. We refer to this phenomenon
as the training effect. Table 3 (b) illustrates this phenomenon.

Based on the test set, we suggest ordering the vertical axis
from themost common class at the top to the rarest class at the
bottom. Based on the training set, we also propose ordering
the horizontal axis from the most common class on the left to
the rarest class on the right. Due to test and training effects,
the values closer to the top-left corner are likely to be higher.
Specifically, for diagonal entries, entry i is likely to be higher
than entry i + 1. For off-diagonal entries, ignoring diagonal
ones, an entry ij is likely to be higher than the one to its right
or below it and lower than the one to its left or above it. Table 3
(c) illustrates this order.We refer to this expected organization
as test-training ranking.

When values deviate from this organization, it highlights
specific types of errors, as these entries stand out despite
the class distribution in the datasets. For the classifier, such
errors might indicate classes that are more difficult or easier
to recognize than others (e.g., in an image classification
problem, the Chameleon class is likely more difficult to
distinguish than the Dog class) or that one class closely
resembles another (e.g., Chameleon often includes images
of camouflaged chameleons on leaves, leading to a high value
of the entry Chameleon,Tree).

The test-training ranking has certain limitations. First, the
ranking can be preserved, while the model’s errors may arise
from factors beyond class distribution. Second, when an entry
deviates from the test-training ranking, it is not always clear
whether it is because the considered entry is too high or
because the previous entry is too low.
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TABLE 3. Illustration of the test and training effects on the confusion
matrix with classes A, B, and C. A is the majority class, and C is the
minority class in the test set, while B is the majority class and A is the
minority class in the training set. The darker the color, the higher the
entry.

In the following subsection, we will see that the normal-
ization process can provide a more precise understanding of
the results.

B. NORMALIZATION
It could be interesting to capture errors that are not due
to test or training effects. We begin by demonstrating how
normalization can help to extract this information. Then,
we explain the meaning of row and column normalization in
the traditional confusion matrix and TCM.

LetM be a confusion matrix, and let i and j be two classes,
which can possibly be the same. The row-normalized and
column-normalized matrices are commonly defined as:

M row
ij :=

Mij∑C
k=1Mik

M col
ij :=

Mij∑C
k=1Mkj

(44)

Let’s show how row normalization can help capture errors
that are not due to test effects. Adding more data to the
test set labeled as i will increase the values in the i-th
row of the confusion matrix. However, if the initial test
set is a representative sample, this should not affect the
distribution of values in that row. For instance, consider a
classification problem with three classes: A, B, and C, and its
corresponding confusion matrix. The first row, denoted rA,
shows that class A is well-recognized, slightly confused with
B, and not confused with C. Doubling the amount of label
A in the test set should lead to the same conclusions, with
the new row approximately equal to 2rA. Thus, changes in
label distribution can be modeled by multiplying the rows of
the confusion matrix. Importantly, a row-normalized matrix
remains invariant under this transformation:

( 
α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...

0 0 · · · αC

M
)row

= M row, (45)

where αi are strictly positive real values. M row is likely
to resemble Table 3 (b). In this sense, row normalization
eliminates the test effect.

Let’s show how column normalization can help to capture
errors that are not due to the training effect. As with row
normalization, changes in prediction distribution are modeled
by multiplying the columns of the confusion matrix, and
a column-normalized matrix remains invariant under this

transformation:

(
M


β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...

0 0 · · · βC

 )col
= M col, (46)

where βi are strictly positive real values. M col is likely to
resemble Table 3 (a). In this sense, column normalization
eliminates the training effect.

In the case of the traditional single-label confusion matrix,
the meaning of row and column normalization is the
following: Mij represents the number of predictions j with
label i, and

∑C
k=1Mik is the total number of instances with

the label i. Therefore, among all instances labeled i, the
row-normalized valueM row

ij gives the proportion of instances
predicted as j:

M row
ij =

number of predictions j with label i
number of labels i

(47)

Similarly, among all predictions j, the column-normalized
value M col

ij gives the proportion of instances with label i:

M col
ij =

number of predictions j with label i
number of predictions j

(48)

In our generalized case, the core idea remains the same.
Formally, the term ij of the matrix TCMrow is:

TCMrow
ij =

TCMij∑C
k=1 TCMik

=

∑N
n=1 λ(yn, ŷn)π∗(yn, ŷn)ij∑C

k=1
∑N

n=1 λ(yn, ŷn)π∗(yn, ŷn)ik

=

∑N
n=1 λ(yn, ŷn)π∗(yn, ŷn)ij∑N

n=1 λ(yn, ŷn)
∑C

k=1 π∗(yn, ŷn)ik

=

∑N
n=1 λ(yn, ŷn)π∗(yn, ŷn)ij∑N
n=1 λ(yn, ŷn)yi/∥y∥1

.

(49)

Considering normalized vectors yn/∥yn∥ and ŷn/∥ŷn∥,
π∗(yn, ŷn)ij estimates the quantity predicted in class j that
should be in class i. Consequently, given normalized vectors
and weighted aggregation, TCMij captures the predicted
quantity in class j that should be in class i in the whole
dataset. Due to marginal properties,

∑C
k=1 TCMik gives

the total quantity of label i across the dataset. Thus, the
row-normalized value TCMrow

ij represents the proportion of
quantities predicted as j among all labels i:

TCMrow
ij =

quantities predicted in j expected in i
quantity of label i

(50)

Similarly, among all quantities predicted in class j, the
column-normalized value TCMcol

ij represents the proportion
of quanties labeled i:

TCMcol
ij =

quantities predicted in j expected in i
quantity of prediction j

(51)
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Finally, the interpretation of the row or column normalization
of TCM is the continuous counterpart of the traditional
confusion matrix.

C. CONCLUSION
We introduce the test-training ranking, a method for plotting
the confusion matrix that helps differentiate between errors
caused by the class distribution of the datasets and those due
to other factors. Although this approach is straightforward to
apply, it has some limitations.

We also demonstrate how normalization can eliminate the
test or training effect, providing a clearer understanding of the
results. Additionally, we show that the interpretation of row
or column normalization of TCM is a generalization of the
traditional single-label confusion matrix.

VII. EXPERIMENTAL SETUP
This section provides the essential details of the experimental
setup. We start by outlining the baselines and the criteria
for comparison, focusing on a method for comparing the
F1-scores generated by each matrix. Next, we describe
the datasets, models, and training processes used in the
experiments.

We conduct three experiments: two comparative analyses
to highlight the differences and similarities with state-of-
the-art approaches and one case study that illustrates the
real-world application of TCM.

A. BASELINES
We compare TCM to three baselines: MLCM, MLCT, and
SCM. There is no need to experimentally compare TCM
with CM, as they are identical in the single-label context
(according to Proposition 7).

MLCT consists of two matrices, one for recall and one for
precision, denoted here asMLCTR andMLCTP, respectively.
To extend SCM for multi-label and soft-label frameworks,

we normalize each instance (i.e., considering y/∥y∥1 and
ŷ/∥ŷ∥1). Moreover, the original matrix entries are intervals
represented by the interval center and half-width, i.e., [a, b]
is represented by (a+b)/2±(b−a)/2.We omit the uncertainty
±(b − a)/2 and consider only the interval center (a +

b)/2 when a point value is required, such as for computing
an F1-score. We refer to this extension as SCMext.
Finally, we denote the transport-based matrix weighted

by λ : y, ŷ 7→ 1 as TCMone, the matrix weighted by
λ : y, ŷ 7→ ∥y∥1 as TCMlab, and the matrix weighted by
λ : y, ŷ 7→ ∥ŷ∥1 as TCMpred.

B. BASELINE COMPARISON CRITERIA
To emphasize the differences between confusion matrices,
we select challenging datasets that encompass a large number
of classes. While these numerous classes introduce complex
errors, they also complicate the process ofmatrix comparison.

To address this challenge, we propose three criteria for
comparison:

• A direct and partial display of the five most common
classes,

• A complete heat map representation of each matrix,
• A comparison based on F1-scores.

The F1-score criterion allows easy comparison of matrices,
even when faced with a large number of classes, as will be
discussed in the following subsection.

C. F1-SCORE CRITERION
The greater the differences in computed F1-scores between
matrices, themore their descriptions ofmodel behavior differ.

In alignment with the single-label matrix framework,
we propose the following definitions for any confusionmatrix
M and class k: Recall is defined as Mkk/

∑C
j=1Mkj, and

Precision is defined as Mkk/
∑C

k=1Mik . Therefore, the F1-
score for class k can be calculated as the harmonic mean of
Precision and Recall for any matrixM .

Comparing derived F1-scores is not straightforward: some
matrices consistently yield high F1-scores, while others yield
lower ones. Furthermore, the distribution of F1-scores varies
across different matrices. As a result, a direct comparison
between two sets of F1-scores is not meaningful.

A possibility is to rank classes by decreasing F1-scores
for each matrix and then compare rankings. However, this
approach has limitations. If F1-scores are identical or nearly
identical, different rankings may not indicate significant
differences in the descriptions of model behavior.

We propose the following process to effectively compare
the F1-scores of matrices Ma and Mb, as used in Fig. 6 and
Fig. 7:
1) Considering the matrix Ma and its F1-scores, rank the

classes in descending order of F1-score. This order is
called Rankinga. Similarly, define Rankingb for Mb.

2) Draw a bar chart ofMa’s F1-scores ordered byRankingb.
3) In a second figure, draw a bar chart of Mb’s F1-scores

following Rankinga.
If Ma and Mb are similar, the bar charts will appear approx-
imately ordered from highest to lowest scores. In contrast,
if Rankinga differs from Rankingb, the bar charts will be
disordered, indicating different analyses.

Moreover, the visual representation highlights the extent
of disparities between F1-scores. For instance, if class
i’s F1-score is very high for Ma and very low for Mb,
in the first plot, a large bar will be surrounded by small
bars (conversely in the second one), revealing a significant
disparity. In contrast, if some scores are similar within
their matrix but differently ranked, the diagram will remain
relatively organized, indicating minimal disparity.

To quantify the resulting disorder, we introduce the
function1. LetF1a,a be the vector ofMa’s F1-scores ordered
by Rankinga (resulting in entries arranged in decreasing
order), and let F1a,b beMa’s F1-scores ordered by Rankingb.
The function 1 is defined as follows:

1 : Ma,Mb
7→ 1000 ∗

∥F1a,a − F1a,b∥1
C∥F1a,a∥1

, (52)

181384 VOLUME 12, 2024



J. Erbani et al.: Confusion Matrices: A Unified Theory

FIGURE 3. Bar plots showing the class distributions of the training and
test datasets. The vertical axis represents the proportion of each class,
while the horizontal axis lists all the classes shared between the train
and test sets. The test sets appear to be representative of their training
set, as the class distributions across them are very similar.

where the value 1000 is chosen for convenience in the plots.
Since this quantity is normalized, it is comparable across all
confusion matrices and datasets.

D. DATASETS
We use two datasets to compare confusion matrices: Movie
Plot Synopses with Tags (MPST) and Microsoft Common
Objects in Context (MS-COCO). We use a third dataset
for a case study: the English version task 3 of the sEXism
Identification in Social neTworks (EXIST) dataset from
CLEF 2023.We utilized the splits provided with each dataset.
Table 4 lists the training sets’ statistics. All datasets are
imbalanced, as depicted in Fig. 3.

MPST corpus [32] contains plot synopses for 14K movies,
each associated with one or more of 71 tags. These tags
are non-redundant and exclusively capture properties of the
movie plots, avoiding any metadata or attributes unrelated
to the plot. Each plot synopsis in the corpus is at least ten
sentences long.

The Microsoft Common Objects in Context (MS-COCO)
dataset [33] is a large-scale object detection, segmentation,
key-point detection, and captioning dataset. The dataset
consists of 328K images annotated with 80 objects. We use
the MS-COCO dataset as a multi-label dataset, where each
present class corresponds to an object within a bounding box,
a previously seen procedure [34].

The scientific event sEXism Identification in Social
neTworks (EXIST) at CLEF 2023 [18] involved categorizing
several thousand tweets, each annotated by six annotators
to avoid bias. The goal of the third task is to identify types
of sexism. In its soft-label version, each label is a vector in
[0, 6]6, with one entry per class, resulting from the sum of
six vectors in [0, 1]6, one vector per annotator. An annotator
can vote for one or more classes; see [35] for details. As a
result, labels can have different norms.

E. MODELS
We select state-of-the-art models for each experiment:
DeBERTa [37] for MPST, SqueezeNet 1.1 [38] for MS-
COCO, and BERTweet for EXIST. Model performances are

TABLE 4. Descriptive statistics of the training sets. The abbreviation Card.
stands for cardinality, which is the average number of classes per label
[36]. In line with this definition, the cardinality of EXIST is calculated as
the sum of all annotators’ votes divided by the number of annotators.

listed in Table 5. We use pre-trained models from Hugging
Face and fine-tune them for specific tasks.

F. TRAINING PROCEDURE
Multi-label deep learning typically uses a sigmoid activation
function with binary cross-entropy applied to the final neural
layer [34]. We follow this approach for multi-label tasks.
For the soft-label dataset EXIST, the raw data provide the
votes of each annotator. Instead of training the model on
the sum of the votes, we trained it on a binary vector of
size 6 ∗ 6 = 36, representing the concatenated votes of
all annotators. This method allows for standard multi-label
training. The aggregation of votes is only performed during
the test phase, producing a vector of size 6, representing the
sum of the votes for each class.

To help classifiers predict rare classes, we use two strate-
gies. Firstly, PyTorch provides the pos_weight parameter,
whichmodifies the binary cross-entropy formula by adjusting
the weight of positive labels (see BCEWithLogitsLoss).
We used the weighting recommended by PyTorch, which
is the number of negative labels divided by the number of
positive labels for each class, clipped at 200 for MPST and
100 for the other datasets.

Secondly, we adjust the output threshold, as the standard
threshold of 0.5 is rarely optimal when dealing with
imbalanced datasets [39], [40], [41]. We applied the method
recommended by Johnson and Khoshgoftaar [39] label-wise:
using the training data to find the classification threshold that
maximizes the geometric mean of specificity and recall (i.e.,
√
Specificity ∗ Recall). As shown in Table 5, in our cases, this

strategy had an overall neutral effect on F1-scores, increased
recall, and decreased precision.

We train the models for 75 epochs, retaining the model
weights that maximize the weighted F1-score on the test set.
This procedure is uniformly applied across all experiments
using standard hyperparameters without additional fine-
tuning: the AdamW optimizer, a batch size of 64 for
DeBERTa and BERTweet, 128 for SqueezeNet, and a
learning rate of 1 × 10−5 for DeBERTa and BERTweet,
and 1 × 10−4 for SqueezeNet with an image size fixed at
224 × 224. The seed is set to 42 across all experiments.

G. PERFORMANCE COMPARISONS
Despite differences between models and evaluation metrics,
our model performance aligns with expectations.
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TABLE 5. Performance achieved by different models on various datasets. Gmean refers to the threshold-moving method [39] used to predict rare classes
(see Subsection VII-F). F1-score, Precision, and Recall for EXIST are computed using raw annotators’ votes before vote aggregation.

For MPST, Rahman et al. [42] use lightweight Vanilla
Neural Networks and RoBERTa language models in their
pipeline to predict movie tags, achieving an F1-score of 0.38.
Similarly, Rahman and Malik [43] achieve a top-3 F1-Micro
of 0.37 with a model named CNN-FE + FastText. In our
experiment, we achieve a weighted F1-score of 0.35.

For themulti-label classification problemwithMS-COCO,
an ImageNet-pretrained ResNet-50 [44] achieves an F1-
example of 0.71, F1-Micro of 0.69, and F1-Macro of 0.64
[45]. Additionally, a TresNet [46] achieves a weighted F1-
score of 0.79 [34]. In comparison, we achieve a weighted
F1-score of 0.65 and an F1-Macro of 0.60. While these
performances are lower than those reported in the cited
papers, note that SqueezeNet is a much smaller model and
that it was trained with smaller image dimensions. Moreover,
we paid particular attention to rare classes (with weighted
loss and threshold-moving), which may explain the lower
performance.

Considering the EXIST challenge, the best team achieved
an F1-score of 0.62 [18], while we achieved 0.58, placing us
in the top 20% of participants.

VIII. EXPERIMENTAL COMPARISONS: TCM VS.
STATE-OF-THE-ART MATRICES
The objective of our experiments is to compare MLCM,
MLCT, and SCM with TCM in multi-label classification
contexts. We evaluate the confusion matrices based on three
key aspects: the display of the five most frequent classes, heat
maps, and reorganized F1-scores. Each of these aspects is
explored in detail in the subsections below.

In general, we observe that the differences between
the matrices are more pronounced on the MPST dataset
with DeBERTa compared to the MS-COCO dataset with
SqueezeNet. This is likely due to the greater complexity of
model errors, as indicated by the F1-scores in Table 5.

A. MATRIX DISPLAYS
Table 6 and 7 show the non-normalized values of the
confusion matrices. All matrix entries discussed below are
highlighted in bold.

The values vary significantly. For instance, in Table 6,
the entry C1C1 ranges from 121.6 (in TCMone) to 757
(in MLCTR or MLCTP), while C2C1 ranges from 22.1 (in
TCMone) to 98.2 (in MLCTP). Similar patterns are observed
in Table 7.
Some matrices provide more similar descriptions of model

behavior than others. For instance, TCMpred and MLCTP

have close values, as do TCMone and SCMext, which aligns
with Proposition 9. In contrast, MLCTR has high diagonal
values but low non-diagonal entries, setting it apart from the
transport-based matrices.

Proposition 8 demonstrates that the contribution formulas
of TCMlab and MLCM are similar. However, certain values,
such as C5C5 and C5C2 in Table 6 differ significantly
(248.4 inMLCMversus 177.6 in TCMlab, and 13.5 inMLCM
versus 20.1 in TCMlab). This indicates that formula differ-
ences can significantly impact the final values. Generally,
MLCM has higher diagonal and lower non-diagonal values
than TCMlab, favoring agreement over error.
The uncertainties in SCMext can be significant and equal to

the center of the interval (23.6±14.6 in C2C3 Table 6, 15.4±

12.5 in C1C2, or 3.4±3.4 in C5C2 Table 7), complicating the
interpretation. Although when considering SCMext, we could
focus only on central values, this approach would lack
justification. In contrast, TCM is easier to interpret, with each
entry corresponding to a single value, theoretically justified
and fulfilling desirable properties.

Weighting impacts the values of TCMone, TCMlab, and
TCMpred. The weighting corresponds to 1 in TCMone, ∥y∥1 in
TCMlab, and ∥ŷ∥1 in TCMpred. Since ∥y∥1 and ∥ŷ∥1 are
always at least 1, values in TCMlab and TCMpred are sys-
tematically greater than in TCMone. Additionally, TCMpred

values are higher than those of TCMlab because, in both
experiments, Recall is higher than Precision, reflecting the
model’s over-prediction.

In summary, while the matrices yield different raw values,
they generally align with a version of TCM, with the excep-
tion ofMLCTR. TCMlab andMLCMmay differ despite some
shared characteristics outlined in Proposition 8. SCMext can
be difficult to interpret, and weighting affects transport-based
matrix results. However, a direct and partial comparison of
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the matrices alone is insufficient to validate these findings.
Additional insights can be gained by comparing heat maps
and F1-scores.

B. HEAT MAPS
Fig. 4 and Fig. 5 display heat maps of matrices.

The heatmaps appear similar. Luminous and non-luminous
points tend to occupy comparable coordinates, indicating
consistency in qualitative analysis. However, the variation in
brightness suggests differences in quantitative findings.

Some matrices favor true positive entries across both
experiments. This is particularly apparent in the row-
normalized matrix. For instance, the diagonal of MLCTR

is notably bright, whereas the diagonal of MLCTP is
more subdued. Similarly, considering Fig. 4, this trend is
also observed with MLCM compared to TCMone, TCMlab,
TCMpred, and SCMext.
Some matrices highlight errors more than others. In Fig. 5,

the off-diagonal terms generally appear dark, whereas their
brightness varies slightly in Fig. 4. We observe that MLCTP

and TCMpred seem darker, while others, particularly TCMone,
are lighter.

In summary, the conclusions about model behavior are
qualitatively similar but quantitatively different. Quantifi-
cation is crucial, as model diagnostics rely on the relative
comparison of matrix entries. Significant insights can be
derived from comparing F1-scores, which will be further
explored in the following subsection.

C. REORDERED F1-SCORES
Fig. 6 and Fig. 7 show the reorganized F1-scores, with the
resulting disorder measured by the function 1 introduced in
Section VII-C.
F1-score distributions can vary significantly. For example,

diagonal plots in Fig. 6 show that MLCM and MLCTR have
high F1-scores, while MLCTP and SCMext have lower ones.
No two matrices produce the same ranking, confirming the

quantitative differences noted in Subsection VIII-B. Some
are small, such as between TCMpred and MLCTP in Fig. 7,
allowing for a relative decrease in the plot bars. Others
are larger, leading to a loss of monotony, such as between
TCMone and MLCTR in Fig. 6.

Some matrices yield similar rankings. For instance,
TCMpred and MLCTP are closely aligned (in Fig. 6
1(TCMpred,MLCTP) = 1(MLCTP,TCMpred) = 2,
in Fig. 7 1(TCMpred,MLCTP) = 1(MLCTP,TCMpred) =

1). Similarly, SCMext and TCMone also show some
alignment (in Fig. 6 1(SCMext,TCMone) = 6 and
1(TCMone,SCMext) = 7, in Fig. 7 1(SCMext,TCMone) =

3 and 1(TCMone,SCMext) = 2).
Proposition 8 demonstrates that TCMlab and MLCM

share some formulas. However, the remaining differences
can lead to distinct analyses (for example, in Fig. 6
1(TCMlab,MLCM) = 11 and 1(MLCM,TCMlab) = 12).

Weighting has a notable impact on transport-based matri-
ces. TCMone, TCMlab, and TCMpred show disorder scores
between 12 and 24 in Fig. 6, and between 2 and 11 in Fig. 7.
In summary, the F1-score analysis highlights differences in

the matrices, reflected in their varying F1-score distributions
and rankings. This confirms that their quantitative analysis
of the model’s behavior varies. Some matrices, such as
TCMpred and MLCTP, or TCMone and SCMext, produce
similar rankings. Proposition 8 suggests similarities between
TCMlab and MLCM, but this is not fully confirmed by the
experiments. Finally, the distinct distributions and rankings
in transport-based matrices emphasize the importance of
considering weighting when assessing model performance.

D. CONCLUSION
The confusion matrices appear to be roughly similar in the
two experiments. For instance, the heatmaps exhibit nearly
identical qualitative analyses, and the rearranged F1-scores
are not entirely disordered. This suggests a common intuition
across the different approaches.

This observation is further reinforced by the fact that
some state-of-the-art matrices closely resemble specific
transport-based matrices (MLCTP seems close to TCMpred,
SCMext to TCMone, and to a lesser extent MLCM to
TCMlab). Specifically, transport matrices share a common
understanding of agreement and error (as recorded for each
instance in π∗(y, ŷ)) and differ only in the weighting λ

applied. In other words, they vary according to the vectors
considered at each instance to establish the model’s behavior:

(
yn

∥yn∥1
,

ŷn

∥ŷn∥1
), (yn, ŷn

∥yn∥1
∥ŷn∥1

), or (yn
∥ŷn∥1
∥yn∥1

, ŷn),

(53)

see Subsection III-F for details. Thus, the proximity of
confusion matrices to specific transport matrices demon-
strates that a similar understanding of agreement and error
is shared in practice. The vectors considered to establish
conclusions are likely the main source of difference. Our
method provides a unifying framework by approximating
state-of-the-art approaches with a unified theory.

Nevertheless, differences exist, as evidenced by the raw
matrix displays, the varying heatmap intensities, and the
remaining disorder in the F1-scores. On the one hand, some
of these differences are related to the vectors considered
to establish the model’s behavior (the weighting in our
approach). For instance, we observed that TCMone, TCMpred,
and TCMlab yield different conclusions. On the other hand,
the shared understanding of agreement and error across
the matrices is similar, reflecting a common intuition, but
not identical. For each approach, the formalization of this
intuition relies heavily on the definitions chosen to quantify
agreement and error.

These experiments do not determine which definitions
are the most appropriate, i.e., which matrix provides the
best behavioral description of the model. They establish the
existence of a shared intuition for describing this behavior.
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TABLE 6. Partial display of the different confusion matrices of DeBERTa on MPST. Only the five most common classes in the training set are displayed.
The matrices are not normalized. Entries cited in the body of the article are in bold.

What indicates that our definition is superior to pre-existing
ones are sections III to VI. These sections demonstrate
that we have formulated a very general definition based on
minimal assumptions, which are intuitive and meet desirable
properties not satisfied by other matrices.

IX. EXIST CASE STUDY
This section proposes interpreting the results of BERTweet
on EXIST task 3 using transport-based matrices shown in
Table 8. We start by examining non-normalized matrices
before analyzing the results for normalized matrices.

According to Subsection VI-A, we order the vertical axis
from the most common class to the rarest class, based on
the test set, and the horizontal axis from the most common
class to the rarest class, based on the training set. In this
experiment, the class rankings are identical across both
datasets.

A. NON-NORMALIZED MATRICES
This subsection analyses the non-normalized matrices (a),
(b), and (c).

The class C1 is more frequently recognized, underesti-
mated, and overestimated compared to the other classes,
as indicated by the significant values of the row and column
C1 across matrices (a), (b), and (c). These phenomenons
primarily arise because C1 is largely dominant (constituting
47% of the training set and 43% of the test set).

In all three matrices, the test-training ranking shows that
class C5 is poorly understood by the classifier (many entries
in row or column C5 do not follow the test-training ranking).
Specifically, while the model seems to distinguish C5 from
C4 (since the C5C4 and C4C5 entries have low values),
it tends to confuse C5 with other classes (C2, C3, and C6
have large values in both row and column C5). Additionally,
we note that when C4 is underestimated, C2 and C3 are
overestimated. We also observe that C3 is underestimated in
favor of C6.

The classifier has correctly grasped the exclusivity of the
non-sexist class. Specifically, we observe that the values
of column C1 in matrix (c) are not as important as in the
other non-normalized matrices. The weighting λ : y, ŷ 7→

∥ŷ∥1 reduces the importance of the C1 column in favor of the

181388 VOLUME 12, 2024



J. Erbani et al.: Confusion Matrices: A Unified Theory

TABLE 7. Partial display of the different confusion matrices of SqueezeNet on MS-COCO. Only the five most common classes in the training set are
displayed. The matrices are not normalized. Entries cited in the body of the article are in bold.

other columns. In other words, we likely observe ∥ŷ∥1 small
when C1 is predicted and ∥ŷ∥1 large when it is not. This
suggests that the model has understood the exclusivity of
C1: for an annotator, a tweet is either non-sexist (i.e., C1)
or sexist (i.e., one or more classes different from C1). When
a tweet is classified as non-sexist, only C1 is predicted,
leading to ∥ŷ∥1 ≈ 6 (corresponding to an agreement of
6 annotators). In the opposite case, multiple non-exclusive
classes are possible, potentially leading to ∥ŷ∥1 ≥ 6.
The model tends to overpredict when not predicting C1.

The C1 column in matrix (c) is roughly equal to that in (b),
but the other columns are generally at least twice as large.
This suggests that when C1 is predicted, ∥y∥1 ≈ ∥ŷ∥1 occurs;
otherwise, ∥y∥1 ≤ ∥ŷ∥1 does.

B. NORMALIZED MATRICES
This subsection analyses the normalized matrices from (d) to
(i). Since their results align with previous findings, we will
focus on the new insights. We begin by discussing the
row-normalized matrices (d), (f), and (h), followed by an
analysis of the column-normalized matrices (e), (g), and (i).

Matrices (d), (f), and (h) reveal that underestimations in
favor of C2 and C3 for C4 and C5 are at least as prominent
as they are for C1. More precisely, C4C2 and C5C2 are
greater than C1C2 in (d) and (f) and roughly equal in (h).
The conclusions are similar if we consider C3 instead of C2.

Additionally, we observe that underestimations of C6 in
favor of C5 are the most significant. Specifically, among all
underestimates of C6, the predictions of C5 represent the
larger portion compared to other classes (C6C5 is greater than
CiC5 for i ̸= 5, 6). The same applies if C5 is switched with
C6.

Matrices (e), (g), and (i) do not reveal much new
information, except that the overestimations ofC2 originating
from C1 are comparable to the ones of C5. Specifically,
among all overestimations of C2 or C5, the C1 label accounts
for a larger share than other classes (C1C2 and C1C5 are
greater than C1Cj for j ̸= 1, 2, 5).

C. CONCLUSION
The non-normalized matrices and the test-training ranking
criterionwere enough to capture themain behavioral patterns.
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FIGURE 4. Heat maps of confusion matrices resulting from the MPST experiment with DeBERTa. Each matrix is plotted in two versions:
row-normalized and column-normalized. The color scale is shared across all matrices.

The model has trouble with class C5, which is often over
and underestimated in favor of C1, C2, and C3. However,
in terms of proportions, the normalized matrices show that
confusions involving C2 and C3 are at least as significant as
those involving C1. The same is true for C4. This suggests
that the errors between C4 or C5 and C2 or C3 are not just
due to data distribution.

The normalized matrices also show that C6 is particularly
underestimated in favor of C5, and vice versa, pointing to
errors caused by factors beyond data distribution.

Finally, the different weightings reveal two key insights:
first, the model recognizes the exclusivity of class C1, and
second, when it does not predict C1, it tends to predict too
many other classes.

X. DISCUSSION
This section addresses some limitations of TCM, specifically
evaluating the advantages and drawbacks of normalization
and the use of the discrete metric as the cost function.

A. NORMALIZATION
By forcing the labels and predictions to share the same norm,
normalization ensures that any model error reflects confusion
between two classes. Specifically, an overestimation of class
j must correspond to an underestimation of class i, meaning
errors in class j can not be viewed in isolation from class
i. We expect the model’s behavior to reveal actual class
confusions through redundancy while other errors are spread
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FIGURE 5. Heat maps of confusion matrices resulting from the MS-COCO experiment with SqueezeNet. Each matrix is plotted in two versions:
row-normalized and column-normalized. The color scale is shared across all matrices.

evenly across affected classes. This issue also appears in the
single-label confusion matrix.

Normalization can also lead to a loss of information.
For example, consider two distinct instances, (y, ŷ) and
(y′, ŷ′), where y′ = αy and ŷ′ = β ŷ, with α and β as
positive constants. In this case, the normalized contributions
of (y, ŷ) and (y′, ŷ′) would be identical despite representing
different model behaviors. However, by applying appropriate
weighting, we can recover some norm information, especially
when using multiple matrices with different weightings.

The key advantage of normalization is that it enables
the use of optimal transport theory, which supports all
results. It also enhances the interpretability of transport-

based matrices, for example, through properties like the
marginal sum, leading to consistent metrics. Finally, as shown
in this paper, normalization allows us to draw significant
conclusions about the model’s behavior.

B. DISCRETE METRIC
Better cost functions could be found. The set of labels and
predictions provides insight into class dissimilarity within
the model. By considering all instances, we can deduce
more representative cost functions. However, assessing class
proximity is exactly what a confusion matrix does, so if this
information is already available, there is no need to go further.
Moreover, the discrete metric offers simplicity, with explicit
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FIGURE 6. Bar plots display F1-scores derived from confusion matrices with different organizations on MPST with DeBERTa experiment. The bar plot
ij represents F1-scores of matrix i organized by ranking derived from matrix j . Off-diagonal values represent the function 1 applied to matrices i
and j (see Section VII-C).

solutions to the Kantorovich problem. It is cautious due to its
minimal assumptions and highly interpretable, as the results
are straightforward to understand.

XI. CONCLUSION
This paper addresses key limitations of existing confusion
matrices that extend confusion matrices to broader frame-
works, such as lack of justification, difficult interpretability,
and limited frameworks.

To resolve these issues, we propose a novel approach
using optimal transport theory combined with the principle

of maximum entropy. The Trasport-based Confusion Matrix
extends the traditional confusion matrix to multi and
soft-label scenarios while being identical in single-label
cases. We offer a very general definition based on minimal
assumptions, which are intuitive and meet desirable proper-
ties not satisfied by other matrices. In addition, we provide
an analytical solution that ensures scalability. While existing
methods appear incompatible, our work demonstrates that a
shared understanding of agreement and error exists, aligning
different approaches under a unified theory. We also propose
an extension of the Recall, Precision, F1-score, and Accuracy
that can be computed directly from TCM.
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FIGURE 7. Bar plots display F1-scores derived from confusion matrices with different organizations on SqueezeNet with MS-COCO experiment. The
bar plot ij represents F1-scores of matrix i organized by ranking derived from matrix j . Off-diagonal values represent the function 1 applied to
matrices i and j (see Section VII-C).

Furthermore, we introduce the test-training ranking, a tech-
nique for plotting confusion matrices to distinguish between
errors stemming from class distribution and those from other
factors.We also show how normalization can help in this task.

Looking forward, future research could explore the direct
use of raw model outputs without binarization in single
or multi-label contexts for model analysis, employ TCM
as a cost function or regularizer for model optimization,
and develop active learning strategies to enhance model
performance by selecting unlabeled examples based on TCM
insights.

APPENDIX A

USEFUL LEMMAS FOR DEMONSTRATIONS

In this section, we provide some additional lemmas used in
the demonstrations. Their proofs are given in the following
appendix sections, except for Lemma 5 and Lemma 6, which
are established analysis mathematical results. The reader is
advised to pay attention to the lemmas when they are used
in demonstrations, as their properties will become clearer in
context.

Lemma 1 is a simple algebraic property.
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TABLE 8. Transport-based matrices on EXIST with BERTweet. Classes are sorted in descending order of prevalence, C1 corresponds to Non-Sexist, C2 to
Ideological-Inequality, C3 to Stereotyping-Dominance, C4 to Objectification, C5 to Sexual-Violence, and C6 to
Misogyny-Non-Sexual-Violence. Color scales are specific to each matrix. For column-based normalization, colors compare entries within the same
row. For row-based normalization, colors compare entries within the same column.

Lemma 1. Let u and v be two vectors inRC
≥0 with the same

norm, ∥u∥1 = ∥v∥1. Then,

∥u− min(u, v)∥1 = ∥v− min(u, v)∥1 (54)

Given a matrix belonging to the set of optimal transference
plans with classes sorted in a particular order, let’s consider
rearranging the order of the classes. Lemma 2 explains how
to derive the matrix equivalent to the original one after the
rearrangement.
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Lemma 2. Let σ be a permutation of the integer interval
from 1 to C, and (y, ŷ) be an instance. Let (s, ŝ) be two vectors
defined as:

sσ (k) = yk , and ŝσ (k) = ŷk , for k = 1 . . .C . (55)

If M̃ is a matrix in T opt(s, ŝ), then the matrix M defined as,

Mij = M̃σ (i)σ (j), for i, j = 1 . . .C, (56)

is in T opt(y, ŷ).
Lemma 3 is a property of the function f given in

Definition 1.
Lemma 3. Let u and v be two vectors inRC

≥0 with the same
norm, and i and j two integers between 1 and C. The following
equalities hold:

C∑
k=1

f (u, v)kj = vj and
C∑
k=1

f (u, v)ik = ui. (57)

The following lemma exhibits an element of T opt(y, ŷ)
where the error is maximal in column C .
Lemma 4. The following matrix, denoted as M, is in

T opt(y, ŷ),

M := f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

+ m⊗ EC , (58)

where EC is a zero vector of size C such as its entry C equals
1, while others are zero. The vector m is in RC

≥0 and it is
defined as follows: it exists an integer p such as

p−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
).

(59)

If p = 1, then p − 1 = 0, and the first term is an empty sum
equal to 0. Then, mk =

yk
∥y∥1

− min( yk
∥y∥1

,
ŷk

∥ŷ∥1
) when k < p,

mp =
ŷC

∥ŷ∥1
−min( yC

∥y∥1
,
ŷC

∥ŷ∥1
)−

∑p−1
k=1

yk
∥y∥1

−min( yk
∥y∥1

,
ŷk

∥ŷ∥1
),

and mk = 0 if k > p.
Moreover, it holds

M1C = min(
yi

∥y∥1
− min(

yi
∥y∥1

,
ŷi

∥ŷ∥1
),

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)), and

MC−1C = max
(
0,

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)

−

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
)
. (60)

Lemma 5 and Lemma 6 are established mathematical
results from analysis; for more details, refer to [47].

Lemma 5. Let f be differentiable function on D ⊂ Rn.
Then, f is concave on D if, and only if:

∀ (x1, x2) ∈ D2, f (x2) ≤ f (x1) + ⟨∇f (x1) , x2 − x1⟩

(61)

where ∇ and ⟨·, ·⟩ denote the gradient of a function and the
usual scalar product, respectively.

Lemma 6. Let f an affine function on D ⊂ Rn. Then,
it holds:

∀ (x1, x2) ∈ D2, f (x2) = f (x1) + ⟨∇f (x1) , x2 − x1⟩

(62)

where ∇ denotes the gradient of a function.

APPENDIX B
PROOF OF LEMMA 1
By assumption, ∥u∥1 = ∥v∥1, this leads to

∥u− min(u, v)∥1 =

C∑
k=1

| uk − min(uk , vk )︸ ︷︷ ︸
≥0

|

=

C∑
k=1

uk − min(uk , vk )

= ∥u∥1 −

C∑
k=1

min(uk , vk )

= ∥v∥1 −

C∑
k=1

min(uk , vk )

=

C∑
k=1

| vk︸︷︷︸
≥0

| −

C∑
k=1

min(uk , vk )

=

C∑
k=1

vk−min(uk , vk )︸ ︷︷ ︸
≥0

=

C∑
k=1

|vk −

C∑
k=1

min(uk , vk )|

= ∥v− min(u, v)∥1, (63)

ending the proof.

APPENDIX C
PROOF OF LEMMA 2
Since the matrix M̃ is in T opt(s, ŝ), the following equalities
hold:

M̃ ∈ RC×C
≥0 ,

C∑
j=1

M̃ij =
si

∥s∥1
,

C∑
i=1

M̃ij =
ŝj

∥ŝ∥1
, and

M̃ii = min(
si

∥s∥1
,
ŝi

∥ŝ∥1
), for i = 1 . . .C . (64)
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Let M be the matrix defined as:

Mij = M̃σ (i)σ (j), for i, j = 1 . . .C . (65)

Since the entries of M are a rearrangement the entries of
M̃ ∈ RC×C

≥0 , it follows that M ∈ RC×C
≥0 . By design, and

because ∥y∥1 = ∥s∥1 and ∥ŷ∥1 = ∥ŝ∥1, we have:

C∑
j=1

Mij =

C∑
j=1

M̃σ (i)σ (j) =
sσ (i)
∥s∥1

=
yi

∥y∥1
,

C∑
i=1

Mij =

C∑
i=1

M̃σ (i)σ (j) =
ŝσ (j)
∥s∥1

=
ŷj

∥ŷ∥1
, and

Mii = M̃σ (i)σ (i) = min(
sσ (i)
∥s∥1

,
ŝσ (i)
∥ŝ∥1

)

= min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
), for i = 1 . . .C, (66)

achieving the proof.

APPENDIX D
PROOF OF LEMMA 3
Let u and v be two vectors in RC

≥0 with same norm, and i and
j be two integers between 1 and C . It follows that

C∑
k=1

f (u, v)kj

= f (u, v)jj +
C∑

k=1:k ̸=j

f (u, v)kj

= min(uj, vj)

+

C∑
k=1:k ̸=j

(
uk − min(uk , vk )

)(
vj − min(uj, vj)

)
∥u− min(u, v)∥1

. (67)

Since min(uj, vj) equals uj or vj, it follows that
(
uj −

min(uj, vj)
)(
vj − min(uj, vj)

)
= 0, leading to

C∑
k=1

f (u, v)kj

= min(uj, vj) +

C∑
k=1

(
uk − min(uk , vk )

)(
vj − min(uj, vj)

)
∥u− min(u, v)∥1

= min(uj, vj) +

(
vj − min(uj, vj)

) C∑
k=1

uk − min(uk , vk )
∥u− min(u, v)∥1︸ ︷︷ ︸

=1

= min(uj, vj) + vj − min(uj, vj)

= vj (68)

In the same way,

C∑
k=1

f (u, v)ik

= f (u, v)ii +
C∑

k=1:k ̸=i

f (u, v)ik

= min(ui, vi) +

C∑
k=1

(
ui − min(ui, vi)

)(
vk − min(uk , vk )

)
∥u− min(u, v)∥1︸ ︷︷ ︸

=∥v−min(u,v)∥1, according to Lemma 1

= min(ui, vi) +

(
ui − min(ui, vi)

) C∑
k=1

vk − min(uk , vk )
∥v− min(u, v)∥1︸ ︷︷ ︸

=1

= ui, (69)

which completes the proof.

APPENDIX E
PROOF OF LEMMA 4
Considering

M = f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

+ m⊗ EC , (70)

to apply f , wemust demonstrate that the variable vectors have
non-negative entries and the same norm. Next, wemust verify
that M is in T opt(y, ŷ), particularly by verifying the diagonal
values and the sum constraints. Finally, we will compute the
value of entryM1C and MC−1C .

A. VECTORS WITH NON-NEGATIVE ENTRIES
Let’s show that values in y

∥y∥1
− m and ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)
)

are non-negative. Let k be an integer
between 1 and C .

Considering the first vector, y
∥y∥1

− m, if k < p, then,

by definition, mk =
yk

∥y∥1
− min( yk

∥y∥1
,

ŷk
∥ŷ∥1

), leading to
yk

∥y∥1
− mk = min( yk

∥y∥1
,

ŷk
∥ŷ∥1

) ≥ 0. Otherwise, if k = p, then

yp
∥y∥1

− mp

=
yp

∥y∥1
−

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) +

p−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

= min(
yp

∥y∥1
,
ŷp

∥ŷ∥1
)

+

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) −

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

≥0, by assumption about p

≥ min(
yp

∥y∥1
,
ŷp

∥ŷ∥1
)

≥ 0. (71)
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Finally if k > p, then, by definition, mk = 0 which leads
to yp

∥y∥1
− mp =

yp
∥y∥1

≥ 0. In conclusion, y
∥y∥1

− m has non-
negative entries.

Considering the second vector, ŷ
∥ŷ∥1

− EC
( ŷC

∥ŷ∥1
−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)
)
, if k = C , then( ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

C

=
ŷC

∥ŷ∥1
−

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)

= min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≥ 0. (72)

Otherwise,( ŷ
∥ŷ∥1

− EC
( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

k
=

ŷk
∥ŷ∥1

≥ 0,

(73)

this conclude to the non-negativity of ŷ
∥ŷ∥1

− EC
( ŷC

∥ŷ∥1
−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)
)
.

B. SAME NORM
Let’s check that vectors y

∥y∥1
− m and ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)
)
have the same norm.

Firstly, we observe that (74), as shown at the bottom of the
next page.

Secondly, by adding ∥min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1 to both sides of

the equality

∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
) − m∥1

= ∥
ŷ

∥ŷ∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)

− EC
( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)
∥1, (75)

it follows that

∥
y

∥y∥1
min(

y
∥y∥1

,
ŷ

∥ŷ∥1
) − m∥1

− +∥min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

= ∥
ŷ

∥ŷ∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)

− EC
( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)
∥1

+ ∥min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

⇒ ∥
y

∥y∥1
− m∥1 = ∥

ŷ
∥ŷ∥1

− EC
( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)
∥1 (76)

This holds because all the entries of y
∥y∥1

−min( y
∥y∥1

,
ŷ

∥ŷ∥1
)−

m and ŷ
∥ŷ∥1

− min( y
∥y∥1

,
ŷ

∥ŷ∥1
) − EC

( ŷC
∥ŷ∥1

− min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)
)

are positive. In conclusion, y
∥y∥1

− m and ŷ
∥ŷ∥1

− EC
( ŷC

∥ŷ∥1
−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)
)
have the same norm.

C. DIAGONAL VALUES
To show the property of diagonal values, we need to show two
prerequisites: mC = 0 and

min
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

= min(
y

∥y∥1
,

ŷ
∥ŷ∥1

). (77)

Firstly, let’s show thatmC = 0. By design, if p ≤ C−1 then
mC = 0. Otherwise, if p = C , then (78), as shown at the
bottom of the next page.

Since min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) equals to yC

∥y∥1
or ŷC

∥ŷ∥1
, either the

first term |
ŷC

∥ŷ∥1
− min( yC

∥y∥1
,
ŷC

∥ŷ∥1
)|, or the second one |

yC
∥y∥1

−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)| is zero. We observe that

|
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)| ≤ ∥

ŷ
∥ŷ∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1, and |
yC

∥y∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)| ≤ ∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1,

(79)

which leads to mC ≤ 0. By design, all entries of m are non-
negative, particularly 0 ≤ mC . The inequalities 0 ≤ mC ≤

0 imply that mC = 0.
Secondly, let’s compute the vector min

(
y

∥y∥1
− m,

ŷ
∥ŷ∥1

−

EC
( ŷC

∥ŷ∥1
− min( yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

entry per entry. Let k be an
integer between 1 and C .
If k = C , then mC = 0 and ECC = 1, leading to (80), as

shown at the bottom of page 28.
Otherwise, if p < k < C , then mk = 0 and ECk = 0,

leading to (81), as shown at the bottom of page 28.
Otherwise, if k < C and k < p, then mk =

yk
∥y∥1

−

min( yk
∥y∥1

,
ŷk

∥ŷ∥1
) and ECk = 0, leading to (82), as shown at

the bottom of page 28.
Finally, if k < C and k = p, then mk =

ŷC
∥ŷ∥1

−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

∑p−1
l=1

yl
∥y∥1

− min( yl
∥y∥1

,
ŷl

∥ŷ∥1
) and ECk = 0,

leading to (83), as shown at the bottom of page 28.
We will bound A, and this will allow us to conclude.

By assumption about p, (84), as shown at the bottom of
page 29. which leads to (85), as shown at the bottom of
page 29.

In conclusion, we prove that

min
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

= min(
y

∥y∥1
,

ŷ
∥ŷ∥1

) (86)

We can now conclude that the definition of EC implies that
the non-zero entries in m⊗ EC are exclusively in column C .
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Furthermore, since mC = 0, the diagonal entry C of m⊗ EC

is also zero. Consequently, the entire diagonal of m ⊗ EC

is zero. Moreover, based on the definition of f and the fact
that min

(
y

∥y∥1
− m,

ŷ
∥ŷ∥1

− EC
( ŷC

∥ŷ∥1
− min( yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

=

min( y
∥y∥1

,
ŷ

∥ŷ∥1
), the following equality holds:

[
f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
) − m∥1

=

C∑
k=1

|
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
) − mk |

= |
yp

∥y∥1
− min(

yp
∥y∥1

,
ŷp

∥ŷ∥1
) − mp| +

p−1∑
k=1

|
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
) − mk | +

C∑
k=p+1

|
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
) − mk |

= |
yp

∥y∥1
− min(

yp
∥y∥1

,
ŷp

∥ŷ∥1
) −

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) +

p−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)|+

p−1∑
k=1

|
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
) −

yk
∥y∥1

+ min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)|︸ ︷︷ ︸

=0

+

C∑
k=p+1

|
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
)|

= | −
ŷC

∥ŷ∥1
+ min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) +

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)|︸ ︷︷ ︸

≥0, by assumption about p

+

C∑
k=p+1

|
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
)|︸ ︷︷ ︸

≥0

= −
ŷC

∥ŷ∥1
+ min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) +

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) +

C∑
k=p+1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

︸ ︷︷ ︸
=∥

y
∥y∥1

−min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1

= −
ŷC

∥ŷ∥1
+ min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) + ∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1︸ ︷︷ ︸
=∥

ŷ
∥ŷ∥1

−min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1, according to Lemma 1

= −
ŷC

∥ŷ∥1
+ min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) + ∥

ŷ
∥ŷ∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

= ∥
ŷ

∥ŷ∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
) − EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)
∥1 (74)

mC =
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

C−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

=
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

≥0

+
yC

∥y∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

≥0

−∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1

= |
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)| + |

yC
∥y∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)| − ∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1︸ ︷︷ ︸
=∥

ŷ
∥ŷ∥1

−min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1, according to Lemma 1

= |
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)| + |

yC
∥y∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)| − ∥

ŷ
∥ŷ∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

(78)
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+ m⊗ EC
]
kk

= f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

kk

= min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) (87)

We have proved that the diagonal values correspond to
T opt(y, ŷ).

= min
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

C

= min
( yC
∥y∥1

− mC ,
ŷC

∥ŷ∥1
−

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)

= min
( yC
∥y∥1

,min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)

= min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)

= min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) (80)

= min
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

k

= min
( yk
∥y∥1

− mk ,
ŷk

∥ŷ∥1

)
= min

( yk
∥y∥1

,
ŷk

∥ŷ∥1

)
(81)

= min
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

k

= min
( yk
∥y∥1

− mk ,
ŷk

∥ŷ∥1

)
= min

( yk
∥y∥1

−
yk

∥y∥1
+ min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
),

ŷk
∥ŷ∥1

)
= min

(
min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
),

ŷk
∥ŷ∥1

)
= min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
) (82)

= min
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

p

= min
( yp
∥y∥1

− mp,
ŷp

∥ŷ∥1

)
= min

( yp
∥y∥1

−
ŷC

∥ŷ∥1
+ min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) +

p−1∑
l=1

yl
∥y∥1

− min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
),

ŷp
∥ŷ∥1

)
= min

(
min(

yp
∥y∥1

,
ŷp

∥ŷ∥1
) −

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) +

p∑
l=1

yl
∥y∥1

− min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
)︸ ︷︷ ︸

:=A

,
ŷp

∥ŷ∥1

)

= min
(
A,

ŷp
∥ŷ∥1

)
. (83)
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D. MARGINAL SUM PROPERTY
Let’s show marginal sums proprieties are also met.

Firstly, we show that ∥m∥1 =
ŷC

∥ŷ∥1
− min( yC

∥y∥1
,
ŷC

∥ŷ∥1
) (88),

as shown at the bottom of the next page.
We begin with column sums. If j < C , then (89), as shown

at the bottom of the next page. If j = C , then (90), as shown
at the bottom of the next page.

We continue with the row sums, then (91), as shown at the
bottom of page 31.

We show that the properties of marginal sums are met.
In conclusion, by design of f , all entries in

f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))
(92)

are non-negative, as are the entries in m⊗EC . Consequently,
the M ’s entries are non-negative and M meets all constraints
of T opt(y, ŷ). Therefore,M ∈ T opt(y, ŷ).

E. ENTRY 1C
Let’s show that the value ofM1C is

M1C = min(
yi

∥y∥1
− min(

yi
∥y∥1

,
ŷi

∥ŷ∥1
),

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)). (93)

We will use the fact that

min
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

= min(
y

∥y∥1
,

ŷ
∥ŷ∥1

), (94)

previously demonstrated in Subsection XI-C.
By definition, we have: (95), as shown at the bottom of

page 31. The formula for m1 depends on the value of p.
Considering two cases, p = 1 and p > 1, we will use the
following inequalities, which are satisfied by the assumptions
on p: (96), as shown at the bottom of page 31.

If 1 = p, then, m1 =
ŷC

∥ŷ∥1
− min( yC

∥y∥1
,
ŷC

∥ŷ∥1
) by definition.

Moreover, we can rewritem1 with a minimum: (97), as shown
at the bottom of page 31.

If 1 < p then, m1 =
y1

∥y∥1
− min( y1

∥y∥1
,

ŷ1
∥ŷ∥1

) by definition.
Moreover, we can rewritem1 with a minimum: (98), as shown
at the bottom of page 31.

In conclusion, we prove

M1C

=min
( y1
∥y∥1

−min(
y1

∥y∥1
,
ŷ1

∥ŷ∥1
),

ŷC
∥ŷ∥1

−min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)
.

(99)

F. ENTRY C-1C
Let’s show that the value ofMC−1C is:

MC−1C = max
(
0,

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)

−

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
)
. (100)

p−1∑
l=1

yl
∥y∥1

− min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

p∑
l=1

yl
∥y∥1

− min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
)︸ ︷︷ ︸

subtracting this sum

⇒ −
yp

∥y∥1
+ min(

yp
∥y∥1

,
ŷp

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) −

p∑
l=1

yl
∥y∥1

− min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
) ≤ 0

⇒︸︷︷︸
multiplying by −1

0 ≤ −
ŷC

∥ŷ∥1
+ min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) +

p∑
l=1

yl
∥y∥1

− min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
) ≤

yp
∥y∥1

− min(
yp

∥y∥1
,
ŷp

∥ŷ∥1
)︸ ︷︷ ︸

adding this quantity

⇒ min(
yp

∥y∥1
,
ŷp

∥ŷ∥1
) ≤ min(

yp
∥y∥1

,
ŷp

∥ŷ∥1
) −

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) +

p∑
l=1

yl
∥y∥1

− min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
)︸ ︷︷ ︸

=A

≤
yp

∥y∥1
, (84)

min
(
min(

yp
∥y∥1

,
ŷp

∥ŷ∥1
),

ŷp
∥ŷ∥1

)
︸ ︷︷ ︸

=min(
yp

∥y∥1
,
ŷp

∥ŷ∥1
)

≤ min
(
A,

ŷp
∥ŷ∥1

)
≤ min

( yp
∥y∥1

,
ŷp

∥ŷ∥1

)

⇒ min
(
A,

ŷp
∥ŷ∥1

)
= min

( yp
∥y∥1

,
ŷp

∥ŷ∥1

)
= min

( yk
∥y∥1

,
ŷk

∥ŷ∥1

)
(85)
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Similar to the previous calculus in (95), we show that
MC−1C = mC−1.

If p < C − 1, then mC−1 = 0 by definition. Moreover,
we can rewrite mC−1 with a maximum: (101), as shown at
the bottom of page 32.

If p = C − 1 and ŷC
∥ŷ∥1

− min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) = 0, then by

definition we have: (102), as shown at the bottom of page 32.

Since entries inm are non-negative, it follows 0 ≤ mC−1 ≤

0, leading to mC−1 = 0. It follows (103), as shown at the
bottom of page 32.

Otherwise, if p = C − 1 and ŷC
∥ŷ∥1

− min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) > 0,

then yC
∥y∥1

− min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) = 0, and by definition we have:

(104), as shown at the bottom of page 32.
Otherwise, if p = C , thenmC−1 =

yC−1
∥y∥1

−min( yC−1
∥y∥1

,
ŷC−1
∥ŷ∥1

)
by definition.

If ŷC
∥ŷ∥1

− min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) > 0, we have yC

∥y∥1
−

min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) = 0. Additionally, as

0 ≤
yC−1

∥y∥1
− min(

yC−1

∥y∥1
,
ŷC−1

∥ŷ∥1
), (105)

∥m∥1 =

C∑
k=1

mk = mp +

p−1∑
k=1

mk +

C∑
k=p+1

mk︸ ︷︷ ︸
=0, by definition of p

=
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)−

p−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) +

p−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)︸ ︷︷ ︸

=0

=
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
). (88)

C∑
k=1

[
f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

+ m⊗ EC︸ ︷︷ ︸
only column C is non zero

]
kj

=

C∑
k=1

f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

kj

=
ŷj

∥ŷ∥1
−

=0︷︸︸︷
ECj

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)

︸ ︷︷ ︸
Lemma 3

=
ŷj

∥ŷ∥1
(89)

C∑
k=1

[
f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

+ m⊗ EC
]
kC

=

C∑
k=1

f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

kC
+ mk

=
ŷC

∥ŷ∥1
−

=1︷︸︸︷
ECC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)
+

=
ŷC

∥ŷ∥1
−min( yC

∥y∥1
,
ŷC

∥ŷ∥1
)︷ ︸︸ ︷

∥m∥1︸ ︷︷ ︸
Lemma 3

=
ŷC

∥ŷ∥1
−

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) +

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

=0

=
ŷC

∥ŷ∥1
. (90)
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we can rewrite

mC−1 = max
(
0,
yC−1

∥y∥1
− min(

yC−1

∥y∥1
,
ŷC−1

∥ŷ∥1
)
)
. (106)

Finally, we have: (107), as shown at the bottom of page 33.
According to (106) and (107), it holds

mC−1 = max
(
0,

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)

−

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
)
. (108)

If ŷC
∥ŷ∥1

−min( yC
∥y∥1

,
ŷC

∥ŷ∥1
) = 0, we have: (109), as shown at

the bottom of page 33.

Since all entries in m are non-negative, 0 ≤ mC−1 ≤ 0,
leading to mC−1 = 0. We can conclude (110), as shown at
the bottom of page 33.

In conclusion, we prove (111), as shown at the bottom of
page 33.

APPENDIX F
PROOF OF PROPOSITION 1
First, we establish a lower bound for the minimization
problem:

argmin
T (y,ŷ)

C∑
i,j=1

c(i, j)πij (112)

C∑
k=1

[
f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

+ m⊗ EC
]
ik

=

C∑
k=1

f
( y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

( ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
))

ik
+ mi ECk︸︷︷︸

1 only if k=C otherwise 0

=
yi

∥y∥1

=0︷ ︸︸ ︷
−mi + mi︸ ︷︷ ︸

Lemma 3

=
yi

∥y∥1
(91)

M1C =

[
f
(

y
∥y∥1

− m,
ŷ

∥ŷ∥1
− EC

(
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)
))

+ m⊗ EC
]
1C

=

(
y1

∥y∥1
− m1 − min( y1

∥y∥1
,

ŷ1
∥ŷ∥1

)
) =0︷ ︸︸ ︷( ŷC

∥ŷ∥1
−

ŷC
∥ŷ∥1

+ min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) − min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)
)

∥
y

∥y∥1
− m− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
+ m1

= m1. (95)

p−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
). (96)

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

y1
∥y∥1

− min(
y1

∥y∥1
,
ŷ1

∥ŷ∥1
)︸ ︷︷ ︸

according to (96)

⇒ m1 = min
( y1
∥y∥1

− min(
y1

∥y∥1
,
ŷ1

∥ŷ∥1
),

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)

︸ ︷︷ ︸
=

ŷC
∥ŷ∥1

−min( yC
∥y∥1

,
ŷC

∥ŷ∥1
)

.

(97)

y1
∥y∥1

− min(
y1

∥y∥1
,
ŷ1

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

according to (96)

⇒ m1 = min
( y1
∥y∥1

− min(
y1

∥y∥1
,
ŷ1

∥ŷ∥1
),

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)

︸ ︷︷ ︸
=

y1
∥y∥1

−min( y1
∥y∥1

,
ŷ1

∥ŷ∥1
)

.

(98)
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Next, we show that certain elements of T (y, ŷ) achieve
this bound and identify the properties of these minimizers.

Finally, we demonstrate the converse: satisfying these prop-
erties for an element of T (y, ŷ) implies that it is a minimizer.

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)︸ ︷︷ ︸

according to (96)

⇒
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤ 0

⇒
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

p∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) −

C∑
k=p+1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤ 0

⇒
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤ 0

⇒C−1= max
(
0,

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) −

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

︸ ︷︷ ︸
≤0

)
. (101)

mC−1 =
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

=0, by assumption

−

C−2∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

= −

C−2∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

≤ 0. (102)

mC−1 = max
(
0,

=0︷ ︸︸ ︷
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)−

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

︸ ︷︷ ︸
≤0

)
. (103)

mC−1 =
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

C−2∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)︸ ︷︷ ︸

≥0, by design of m

=
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

C−2∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) −

( yC
∥y∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)
)

︸ ︷︷ ︸
=0, by assumption

=
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

︸ ︷︷ ︸
≥0

= max
(
0,

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) −

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
)
. (104)
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G. MINIMAL BOUND
Let y and ŷ be instances.

min
T (y,ŷ)

C∑
i,j=1

c(i, j)︸ ︷︷ ︸
0 if i=j otherwise 1

πij = min
T (y,ŷ)

C∑
i,j=1,i̸=j

πij = min
T (y,ŷ)

C∑
i,j=1

πij︸ ︷︷ ︸
=1

−

C∑
k=1

πkk = min
T (y,ŷ)

1 −

C∑
k=1

πkk = 1 − max
T (y,ŷ)

C∑
k=1

πkk (113)

Since π is T (y, ŷ), it holds
∑C

k=1 πik =
yi

∥y∥1
. All entries in

π are non-negative, as a result πij ≤
yi

∥y∥1
. Similarly, we get

πij ≤
ŷj

∥ŷ∥1
. These observations allow us to conclude: (114),

as shown at the bottom of the next page.
If there exist matrices π ∈ T (y, ŷ) with a diagonal defined

by πkk = min( yk
∥y∥1

,
ŷk

∥ŷ∥1
), then these matrices achieve the

lower bound. This set of matrices is denoted as T opt(y, ŷ).

H. ELEMENTS ACHIEVING THE MINIMAL BOUND
Let’s show that

∅ ̸= T opt(y, ŷ) :=

{
π ∈ RC×C

: πkk = min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
}

⋂
T (y, ŷ) (115)

If y = ŷ, it is straightforward to see that the diagonal
matrix with its diagonal entries equal to min( y

∥y∥1
,

ŷ
∥ŷ∥1

) =

y
∥y∥1

=
ŷ

∥ŷ∥1
is in T opt(y, ŷ). As a result T opt(y, ŷ) ̸= ∅. Now,

C−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

C∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)︸ ︷︷ ︸

according to (96)

⇒
yC

∥y∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

=0

+

C−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

C∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

⇒

C∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) ≤

C∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

⇒
yC

∥y∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) =

C∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

⇒
yC

∥y∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
) −

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) =

yC−1

∥y∥1
− min(

yC−1

∥y∥1
,
ŷC−1

∥ŷ∥1
). (107)

mC−1 =
yC−1

∥y∥1
− min(

yC−1

∥y∥1
,
ŷC−1

∥ŷ∥1
) ≤

C−1∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
)︸ ︷︷ ︸

according to (96)

= 0 (109)

mC−1 = max
(
0,

=0, by assumption︷ ︸︸ ︷
ŷC

∥ŷ∥1
− min(

yC
∥y∥1

,
ŷC

∥ŷ∥1
)−

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

︸ ︷︷ ︸
≤0

)
. (110)

MC−1C = max
(
0,

ŷC
∥ŷ∥1

− min(
yC

∥y∥1
,
ŷC

∥ŷ∥1
) −

C∑
k=1:k ̸=C−1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
)
. (111)
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we suppose y ̸= ŷ. Let π∗ be the matrix defined by:

π∗
kk = min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
),

π∗
ij =

( yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)
)( ŷj

∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
)
)
/∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

(116)

We will prove that π∗
∈ T opt(y, ŷ). All entries of π∗ are

positive, and

C∑
k=1:k ̸=i

π∗
ik =

C∑
k=1:k ̸=i( yi

∥y∥1
− min(

yi
∥y∥1

,
ŷi

∥ŷ∥1
)
)

( ŷk
∥ŷ∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
)
/∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1.

(117)

Since min( yk
∥y∥1

,
ŷk

∥ŷ∥1
) equals either yk

∥y∥1
or ŷk

∥ŷ∥1
, we have(

yk
∥y∥1

− min( yk
∥y∥1

,
ŷk

∥ŷ∥1
)
)(

ŷk
∥ŷ∥1

− min( yk
∥y∥1

,
ŷk

∥ŷ∥1
)
)

= 0.
It follows (118), as shown at the bottom of the next page.

which leads to
∑C

k=1 π∗
ik =

yi
∥y∥1

because π∗
kk =

min( yk
∥y∥1

,
ŷk

∥ŷ∥1
). Similarly, we prove that

∑C
k=1 π∗

jk =
yj

∥y∥1
.

In conclusion, T opt(y, ŷ) ̸= ∅, and all matrix π with its
diagonal equals tomin( y

∥y∥1
,

ŷ
∥ŷ∥1

) minimise our Kantorovitch
problem.

I. ALL MINIMIZERS SATISFY THE DIAGONAL CONDITION
Now, let’s prove the converse. Let π be a minimizer.
We showed in Subsections XI-G and XI-H that

min
T (y,ŷ)

C∑
i,j=1

c(i, j)πij = 1 −

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
), (119)

which leads to

1 −

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) =

C∑
i,j=1:i̸=j

πij︸ ︷︷ ︸
according to (119)

=

C∑
i,j=1

πij︸ ︷︷ ︸
=1

−

C∑
k=1

πkk

⇒

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) =

C∑
k=1

πkk (120)

We will demonstrate that
C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) =

C∑
k=1

πkk

⇒ πkk = min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) for k = 1 . . .C, (121)

thus completing the proof. Let’s proceed by contradiction.
Assume

∑C
k=1 πkk =

∑C
k=1min( yk

∥y∥1
,

ŷk
∥ŷ∥1

) and there is a

index l such that πll < min( yl
∥y∥1

,
ŷl

∥ŷ∥1
). Given that for all k ,

πkk ≤ min( yk
∥y∥1

,
ŷk

∥ŷ∥1
), we have:

C∑
k=1:k ̸=l

πkk ≤

C∑
k=1:k ̸=l

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
), and

πll < min(
yl

∥y∥1
,
ŷl

∥ŷ∥1
)

⇒

C∑
k=1

πkk <

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
), (122)

contradicting our initial assumption. We just showed that if π
is a minimizer, then its diagonal is defined bymin( y

∥y∥1
,

ŷ
∥ŷ∥1

).

APPENDIX G
PROOF OF PROPOSITION 2
Let’s define the assumptionH as:

H
:= ‘‘At most one class is underestimated or overestimated ’’.

(123)

πij ≤
yi

∥y∥1
, and πij ≤

ŷj
∥ŷ∥1

⇒ πij ≤ min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

⇒

C∑
k=1

πkk ≤

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

⇒ max
T (y,ŷ)

C∑
k=1

πkk ≤

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
).

⇒ 1 −

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) ≤ 1

− max
T (y,ŷ)

C∑
k=1

πkk = min
T (y,ŷ)

C∑
i,j=1

c(i, j)πij. (114)
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Firstly, we prove that under assumption H, the set
T opt(y, ŷ) contains a single matrix. Secondly, we need to
prove that if there is a unique solution, then the previous
assumption is satisfied. We demonstrate the contrapositive,
which is an equivalent implication: if H is not met,
then T opt(y, ŷ) contains an infinite number of matrices.
To achieve this, we will show that T opt(y, ŷ) is a convex
set and then exhibit two different solutions within T opt(y, ŷ).
Consequently, any convex combination of these solutions will
also belong to T opt(y, ŷ), thereby establishing the existence of
an infinite number of solutions.

J. H IMPLIES A UNIQUE ELEMENT IN T OPT(Y , Ŷ )
Let y and ŷ be instances, and π be a matrix in T opt(y, ŷ).
We assumeH is true.

The matrix π meets the following properties:

π ∈ RC×C
≥0 ,

C∑
j=1

πij =
yi

∥y∥1
,

C∑
i=1

πij =
ŷj

∥ŷ∥1
, and

πii = min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
). (124)

In particular, we have:

C∑
j=1,j̸=i

πij =
yi

∥y∥1
− min(

yi
∥y∥1

,
ŷi

∥ŷ∥1
), and

C∑
i=1,i̸=j

πij =
ŷj

∥ŷ∥1
− min(

yj
∥y∥1

,
ŷj

∥ŷ∥1
). (125)

UnderH, most of the sums are zero:
• If at most one class is underestimated, among all
quantities yi

∥y∥1
− min( yi

∥y∥1
,

ŷi
∥ŷ∥1

) with i between 1 and
C , at most one is not zero.

• If at most one class is overestimated, among all
quantities ŷj

∥ŷ∥1
− min( yj

∥y∥1
,

ŷj
∥ŷ∥1

) with j between 1 and
C , at most one is not zero.

As a result, except for a row or a column, all off-diagonal
terms are zero.

For example, let’s suppose that only class j is
overestimated:

ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) > 0, and

ŷk
∥ŷ∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) = 0, for k ̸= j. (126)

Consequently, when l ̸= j,

C∑
k=1:k ̸=l

πkl = 0 ⇒ πkl = 0, for k ̸= j, l (127)

Moreover, by summing on rows different from row j,
it follows:

C∑
l=1,l ̸=k

πkl = πkj =
yk

∥y∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
), for k ̸= j.

(128)

We have demonstrated that all entries of π are determined
by the assumption: only one class is overestimated. The
diagonal entries are given by T opt(y, ŷ)’s constraints. Due
to the constraints of row and column sums, the off-diagonal
entries, except those in column j, are 0. The values in column
j are yk

∥y∥1
− min( yk

∥y∥1
,

ŷk
∥ŷ∥1

). Therefore, when only one class
is overestimated, there is a unique matrix in T opt(y, ŷ).
The scenario where, at most, one class is underestimated

is similar. In conclusion, underH, there is a unique matrix in
T opt(y, ŷ).

K. T OPT(Y , Ŷ ) IS A CONVEX SET
Let π and π ′ be two matrices in T opt(y, ŷ). Let α be a real
number in [0, 1].
Let’s show that π̃ := απ + (1 − α)π ′ is in T opt(y, ŷ), i.e.,

π̃ ∈ RC×C
≥0 ,

C∑
j=1

π̃ij =
yi

∥y∥1
,

C∑
i=1

π̃ij =
ŷj

∥ŷ∥1
, and

π̃ij = min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
). (129)

As a convex combination of positive real value matrices, π̃ is
in RC×C

≥0 . Moreover, the following equalities hold:

C∑
j=1

π̃ij =

C∑
j=1

απij+(1 − α)π ′
ij = α

C∑
j=1

πij + (1 − α)
C∑
j=1

π ′
ij

= α
yi

∥y∥1
+ (1 − α)

yi
∥y∥1

=
yi

∥y∥1
. (130)

C∑
k=1:k ̸=i

π∗
ik =

C∑
k=1

( yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)
)( ŷk

∥ŷ∥1
− min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
)
)
/∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

=

( yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)
) C∑
k=1

ŷk
∥ŷ∥1

− min( yk
∥y∥1

,
ŷk

∥ŷ∥1
)

∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1︸ ︷︷ ︸
=1

=
yi

∥y∥1
− min(

yi
∥y∥1

,
ŷi

∥ŷ∥1
), (118)
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Similarly,
∑C

i=1 π̃ij =
ŷj

∥ŷ∥1
holds. Finally,

π̃kk = απkk + (1 − α)π ′
kk

= αmin(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) + (1 − α)

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) = min(

yk
∥y∥1

,
ŷk

∥ŷ∥1
), (131)

this leads to π̃ ∈ T opt(y, ŷ)
In conclusion, T opt(y, ŷ) is a convex set.

L. NOT H IMPLIES A INFINITE NUMBER OF SOLUTIONS
We now assume that the hypothesis H is unmet. As a result,
there are at least two overestimated classes, denoted as o
and o′, and two underestimated classes, denoted as u and u′.
Wewill demonstrate the existence of two distinctmatricesMa

and Mb in T opt(y, ŷ), then conclude that there are an infinite
number of matrices in T opt(y, ŷ), given by the set of all convex
combinations ofMa and Mb.

Let σ and τ be two permutations on the integer set from 1 to
C . The permutation σ is defined by σ = (o C)(u 1)(u′ C−1),
while the permutation τ is defined by τ = (o C)(u′ 1)(u C −

1). Let s, ŝ, t , and t̂ be vectors of RC
≥0 such that sσ (k) = yk ,

ŝσ (k) = ŷk , and tτ (k) = yk , t̂τ (k) = ŷk for all k from 1 to C (s
stands for sigma, while t stands for tau).
According to Lemma 4, the matrices

M̃a
:= f

( s
∥s∥1

−m,
ŝ

∥ŝ∥1
− EC

( ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
))

+ m⊗ EC , and

M̃b
:= f

( t
∥t∥1

−m,
t̂

∥t̂∥1
− EC

( t̂C
∥t̂∥1

− min(
tC

∥t∥1
,
t̂C

∥t̂∥1
)
))

+ m⊗ EC , (132)

are in T opt(s, ŝ), and T opt(t, t̂) respectively. According to
Lemma 2, the matricesMa, and Mb, defined as,

Ma
ij =M̃a

σ (i)σ (j), and Mb
ij = M̃b

τ (i)τ (j), for i, j = 1 . . .C,

(133)

are both in T opt(y, ŷ).
Let’s show that Ma and Mb are different. (134), as shown

at the bottom of the next page.
The last equality holds by definition of s, and because

∥s∥1 = ∥y∥1 and ∥ŝ∥1 = ∥ŷ∥1. (135), as shown at the bottom
of the next page.

The last equality holds by definition of s, and because
∥s∥1 = ∥y∥1 and ∥ŝ∥1 = ∥ŷ∥1.
In the same way, we show that

Mb
u′o = Ma

uo, and Mb
uo = Ma

u′o. (136)

As a result, to demonstrate that Ma and Mb are different,
we only have to prove that Ma

uo ̸= Ma
u′o, implying different

entry uo and different entry u′o in Ma andMb.
If Ma

uo =
yu

∥y∥1
− min( yu

∥y∥1
,

ŷu
∥ŷ∥1

), then firstly 0 < Ma
uo by

assumption. IfMa
u′o = 0, then these entries are different. Else,

if

Ma
u′o =

ŷo
∥ŷ∥1

− min
(

yo
∥y∥1

,
ŷo

∥ŷ∥1

)
−

C∑
k=1:k ̸=u′

yk
∥y∥1

− min
(

yk
∥y∥1

,
ŷk

∥ŷ∥1

)
, (137)

then we will prove that Ma
uo ̸= Ma

u′o by contradiction. Let’s
suppose that (138), as shown at the bottom of the next page.

The left term is positive, whereas the right term is negative,
leading to a contradiction, proving thatMa

uo ̸= Ma
u′o.

If Ma
uo =

ŷo
∥ŷ∥1

− min( yo
∥y∥1

,
ŷo

∥ŷ∥1
), then firstly 0 < Ma

uo by
assumption. IfMa

u′o = 0, then these entries are different. Else,
if

Ma
u′o =

ŷo
∥ŷ∥1

− min
(

yo
∥y∥1

,
ŷo

∥ŷ∥1

)
−

C∑
k=1:k ̸=u′

yk
∥y∥1

− min
(

yk
∥y∥1

,
ŷk

∥ŷ∥1

)
≤

ŷo
∥ŷ∥1

− min
(

yo
∥y∥1

,
ŷo

∥ŷ∥1

)
−

(
yu

∥y∥1
− min(

yu
∥y∥1

,
ŷu

∥ŷ∥1
)
)

︸ ︷︷ ︸
>0, by assumption

<
ŷo

∥ŷ∥1
− min

(
yo

∥y∥1
,
ŷo

∥ŷ∥1

)
= Ma

u′o, (139)

implying that these entries are different.
In conclusion, we prove that Ma

uo ̸= Ma
u′o, which implies

Ma
̸= Mb. As T opt(y, ŷ) is a convex set, any convex

combination αMa
+(1−α)Mb with α ∈ [0, 1] is in T opt(y, ŷ).

In conclusion, when two classes or more are underestimated,
and two classes or more are overestimated, then there is an
infinite number of solutions.

APPENDIX H
PROOF OF PROPOSITION 3
Let’s show that the matrix

π∗(y, ŷ)

= diag
(
min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)
)

+

(
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)
)

⊗

(
ŷ

∥ŷ∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)
)

∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
(140)

is in T opt(y, ŷ) and maximises the entropy. Moreover, let’s
demonstrate that π∗(y, ŷ) becomes

π∗(y, ŷ) = diag
(
min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)
)
, (141)

when y = ŷ by continuous extension.
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M. CASE Y = Ŷ
Let (y, ŷ) be an instance such that y ̸= ŷ. Let η be a real values
such that η ≤ ∥

y
∥y∥1

−
ŷ

∥ŷ∥1
∥1 ≤ 2η. We will demonstrate that

E :=

(
y

∥y∥1
−min( y

∥y∥1
,

ŷ
∥ŷ∥1

)
)
⊗

(
ŷ

∥ŷ∥1
−min( y

∥y∥1
,

ŷ
∥ŷ∥1

)
)

∥
y

∥y∥1
−min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
→

η→0
0MC ,

(142)

where 0MC is the zero matrix of size C .

Ma
uo = M̃a

σ (u)σ (o)

= M̃a
1C

=

[
f
( s
∥s∥1

− m,
ŝ

∥ŝ∥1
− EC

( ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
))

+ m⊗ EC
]
1C

= min
( s1
∥s∥1

− min(
s1

∥s∥1
,
ŝ1

∥ŝ∥1
),

ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
)

︸ ︷︷ ︸
using Lemma 4

= min
( yu
∥y∥1

− min(
yu

∥y∥1
,
ŷu

∥ŷ∥1
),

ŷo
∥ŷ∥1

− min(
yo

∥y∥1
,
ŷo

∥ŷ∥1
)
)

(134)

Ma
u′o = M̃a

σ (u′)σ (o)

= M̃a
C−1C

=

[
f
( s
∥s∥1

− m,
ŝ

∥ŝ∥1
− EC

( ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
))

+ m⊗ EC
]
C−1C

= max

0,
ŝC

∥ŝ∥1
− min

(
sC

∥s∥1
,
ŝC

∥ŝ∥1

)
−

C∑
k=1:k ̸=C−1

sk
∥s∥1

− min
(

sk
∥s∥1

,
ŝk

∥ŝ∥1

)
︸ ︷︷ ︸

using Lemma 4

= max

0,
ŷo

∥ŷ∥1
− min

(
yo

∥y∥1
,
ŷo

∥ŷ∥1

)
−

C∑
k=1:k ̸=u′

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

 (135)

Ma
uo = Ma

u′o

⇒
yu

∥y∥1
− min(

yu
∥y∥1

,
ŷu

∥ŷ∥1
) =

ŷo
∥ŷ∥1

− min
(

yo
∥y∥1

,
ŷo

∥ŷ∥1

)
−

C∑
k=1:k ̸=u′

yk
∥y∥1

− min
(

yk
∥y∥1

,
ŷk

∥ŷ∥1

)

⇒
yu

∥y∥1
− min(

yu
∥y∥1

,
ŷu

∥ŷ∥1
) +

yu′

∥y∥1
− min(

yu′

∥y∥1
,
ŷu′

∥ŷ∥1
)︸ ︷︷ ︸

>0, by assumption

=
ŷo

∥ŷ∥1
− min

(
yo

∥y∥1
,
ŷo

∥ŷ∥1

)
−

C∑
k=1

yk
∥y∥1

− min
(

yk
∥y∥1

,
ŷk

∥ŷ∥1

)

=
ŷo

∥ŷ∥1
− min

(
yo

∥y∥1
,
ŷo

∥ŷ∥1

)
− ∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1︸ ︷︷ ︸
=∥

ŷ
∥ŷ∥1

−min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1, according to Lemma 1

=
ŷo

∥ŷ∥1
− min

(
yo

∥y∥1
,
ŷo

∥ŷ∥1

)
− ∥

ŷ
∥ŷ∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

≤
ŷo

∥ŷ∥1
− min

(
yo

∥y∥1
,
ŷo

∥ŷ∥1

)
−

( ŷo
∥ŷ∥1

− min(
yo

∥y∥1
,
ŷo

∥ŷ∥1
) +

ŷ′o
∥ŷ∥1

− min(
y′o

∥y∥1
,
ŷ′o

∥ŷ∥1
)
)

≤ −
ŷ′o

∥ŷ∥1
+ min(

y′o
∥y∥1

,
ŷ′o

∥ŷ∥1
)︸ ︷︷ ︸

<0, by assumption

(138)
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Let i, j be two integers. The entry Eij is

Eij =

(
yi

∥y∥1
− min( yi

∥y∥1
,

ŷi
∥ŷ∥1

)
)(

ŷj
∥ŷ∥1

− min( yj
∥y∥1

,
ŷj

∥ŷ∥1
)
)

∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
.

(143)

We will prove that Eij →
η→0

0. To do so, we will establish an

upper bound for Eij that depends on η. Firstly, we will find an
upper bound for the numerator and, secondly, a lower bound
for the denominator.

For the numerator:

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)︸ ︷︷ ︸

=0 if yi
∥y∥1

≤
ŷi

∥ŷ∥1
, otherwise yi

∥y∥1
−

ŷi
∥ŷ∥1

≤ |
yi

∥y∥1
−

ŷi
∥ŷ∥1

| ≤ 2η.

(144)

Similarly, ŷj
∥ŷ∥1

− min( yj
∥y∥1

,
ŷj

∥ŷ∥1
) ≤ 2η. As a result, an upper

bound for the numerator is 4η2.
For the denominator: (145), as shown at the bottom of the

next page. a lower bound for the denominator is η/2.
Since, by design, 0 ≤ Eij, it follows that |Eij| ≤

4η2
η/2 = 8η

for all i and j between 1 and C , which leads to

Eij →
η→0

0 for i, j = 1 . . .C ⇒ E →
η→0

0MC . (146)

We proved, by continuous extension in y = ŷ, that π∗(y, ŷ)
equals to

π∗(y, ŷ) = diag
(
min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)
)
. (147)

In this case, it is straightforward to see that π∗(y, ŷ) ∈

T opt(y, ŷ). According to Proposition 2, there is only
one transference plan in T opt(y, ŷ), which implies that
T opt(y, ŷ) = {π∗(y, ŷ)}. Consequently, since T opt(y, ŷ)
has only one element, it must be the one that maximizes
the entropy.

N. FRAMEWORK TO SOLVE THE CASE Y ̸= Ŷ
This subsection introduces the framework for addressing the
y ̸= ŷ scenario. The major aim of the next subsections is to
solve an optimization problem denoted as (A). To achieve
this, we employ a series of strategies that lead to an easier
optimization problem, denoted as (B). Firstly, we demon-
strate that it is unnecessary to consider all the πij variables.
Following this, we present a more favorable optimization
problem where the entropy is differentiable over the set of
constraints, specifically addressing the issue of πij = 0.
Finally, we propose an alternative function to entropy that
simplifies the calculation of derivatives. These strategies lead
to (B), and we will see later that solving (B) allows us to
solve (A).

Let H be the entropy of a random variable in information
theory.We aim to solve the following problem denoted as (A):

(A) argmax
T opt(y,ŷ)

H (π ), with H (π ) = −

C∑
i,j=1

πij ln(πij),

(148)

where we set 0 ln(0) = 0 within the entropy.
Firstly, let’s show that it is not necessary to consider all

the πij variables to solve this problem. The entries of π are
partially known. T opt(y, ŷ) provides values for the diagonal
entries, whereas for the off-diagonal entries, when

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) = 0, or

ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) = 0, (149)

πij equals 0. For instance, if
yi

∥y∥1
−min( yi

∥y∥1
,

ŷi
∥ŷ∥1

) = 0, then

π ∈ RC×C
≥0 , and

C∑
j=1

πij =
yi

∥y∥1
− min(

yj
∥y∥1

,
ŷj

∥ŷ∥1
) = 0 ⇒ 0 ≤ πij ≤

C∑
j=1

πij ≤ 0 ⇒ πij = 0. (150)

The same applies if ŷj
∥ŷ∥1

−min( yj
∥y∥1

,
ŷj

∥ŷ∥1
) = 0. Consequently,

we are interested in computing the off-diagonal values of π

in the case where

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) > 0, and

ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) > 0. (151)

We define three index sets I, J , and K as follows:

I = {i :
yi

∥y∥1
− min(

yi
∥y∥1

,
ŷi

∥ŷ∥1
) > 0},

J = {j :
ŷj

∥ŷ∥1
− min(

yj
∥y∥1

,
ŷj

∥ŷ∥1
) > 0},

and K = I × J . (152)

Considering (A), all πij ∈ T opt(y, ŷ) such that (i, j) /∈ K can
be considered as constants. More precisely, (153), as shown
at the bottom of the next page.

where γ (y, ŷ) is a constant relative to π ∈ T opt(y, ŷ),
defined by

γ (y, ŷ) = −

C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) lnmin(

yk
∥y∥1

,
ŷk

∥ŷ∥1
).

(154)

To leverage this observation, we consider vectors of size #K
where each entry corresponds to an entry πij with (i, j) ∈ K.
We define a vector p ∈ R#K

≥ 0, which stacks all πij in
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lexicographic order for (i, j) ∈ K. Additionally, let ι be a
function ι : K → N such that pι(i,j) = πij for all (i, j) ∈ K.
We can now consider the entropy of entries πij with (i, j) ∈ K
only. For simplicity, we use the same notation H :

H (p) = −

∑
(i,j)∈K

πij ln(πij). (155)

Given that T opt(y, ŷ) contains matrices of size C , it is not
appropriate for vectors of size #K. Instead, we introduce a
similar set T̃ (y, ŷ) defined by:

T̃ (y, ŷ) =

⋂
i∈I

{gi(p) = 0}
⋂
j∈J

{g̃j(p) = 0}
⋂

R#K
≥0 (156)

where the functions gi and g̃j are defined for p ∈ R#K as
follows:

gi : p 7→ min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) −

yi
∥y∥1

+

∑
j∈J

πij

for all i ∈ I, and

g̃j : p 7→ min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) −

ŷj
∥ŷ∥1

+

∑
i∈I

πij for all j ∈ J

(157)

We observe that if we find p∗
∈ T̃ (y, ŷ) that maximizes the

entropy, it will solve our optimization problem (A). Indeed,

for all p ∈ T̃ (y, ŷ), we have

H (p) ≤ H (p∗) ⇒ H (p) + γ (y, ŷ)︸ ︷︷ ︸
see (154)

≤ H (p∗)

+ γ (y, ŷ)︸ ︷︷ ︸
see (154)

⇒ H (π ) ≤ H (π∗) (158)

where π corresponds to the matrix

πij = pι(i,j) if (i, j) ∈ K, πij = 0 if (i, j) /∈ K and i ̸= j,

and πkk = min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) for k = 1 . . .C . (159)

The matrix π∗ is defined similarly with p∗. Matrices π and
π∗ are in T opt(y, ŷ).
Secondly, let’s establish a more practical framework where

the entropy is differentiable over the set of constraints. Some
πij could be zero by design, making H non-differentiable
at those points. To address this issue, we start by solving a
different optimization problem. Let ε > 0 be a ‘‘sufficiently’’
small positive real number (the term ‘‘sufficiently’’ will be
discussed in Subsection XI-P). The sum of a real number x
and a vector v is defined as (v+ x)k = vk + x. Let Hε be the
function such thatHε : p 7→ H (p+ε) for all p ∈]−ε, +∞[#K.
We begin by solving:

argmax
T̃ (y,ŷ)

Hε(p) = argmax
T̃ (y,ŷ)

H (p+ ε) (160)

η ≤ ∥
y

∥y∥1
−

ŷ
∥ŷ∥1

∥1 =

C∑
k=1

|
yk

∥y∥1
−

ŷk
∥ŷ∥1

| =

C∑
k=1: ŷk

∥ŷ∥1
<

yk
∥y∥1

yk
∥y∥1

−
ŷk

∥ŷ∥1
+

C∑
k=1: yk

∥y∥1
<

ŷk
∥ŷ∥1

ŷk
∥ŷ∥1

−
yk

∥y∥1

=

C∑
k=1

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) +

C∑
k=1

ŷk
∥ŷ∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)

= ∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1 + ∥

ŷ
∥ŷ∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1︸ ︷︷ ︸
=∥

y
∥y∥1

−min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1, by Lemma 1

= 2∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1, (145)

H (π ) = −

C∑
i,j=1

πij ln(πij) = −

∑
(i,j)∈K

πij ln(πij) −

∑
(i,j)/∈K

πij ln(πij)︸ ︷︷ ︸
πij=0, if i̸=j, else πkk=min( yk

∥y∥1
,
ŷk

∥ŷ∥1
)

= −

∑
(i,j)∈K

πij ln(πij)−
C∑
k=1

min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
) lnmin(

yk
∥y∥1

,
ŷk

∥ŷ∥1
)︸ ︷︷ ︸

constant for all π∈T opt(y,ŷ)

= −

∑
(i,j)∈K

πij ln(πij) + γ (y, ŷ) (153)
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The function Hε(p) is C1(] − ε, +∞[#K, R) because
the entropy is C1(]0, +∞[#K, R). In particular, Hε is
C1(T̃ (y, ŷ), R).
Thirdly, to simplify the calculation of derivatives, we intro-

duce the function H̃ε(p), defined by

H̃ε(p) = −

∑
(i,j)∈K

(
πij + ε

) (
ln

(
πij + ε

)
− 1

)
= −

∑
(i,j)∈K

(πij + ε) ln(πij + ε) +

∑
(i,j)∈K

(πij + ε)

︸ ︷︷ ︸
constant relative to p

(161)

More precisely, the last term equals to (162), as shown at the
bottom of the next page.

Since adding a constant does not change the set of
arguments that maximize a function, we have

argmax
T̃ (y,ŷ)

H̃ε(p) = argmax
T̃ (y,ŷ)

Hε(p) = argmax
T̃ (y,ŷ)

H (p+ ε)

(163)

Moreover, it does not change the class property of the
function either. As a result, H̃ε is in C1(] − ε, +∞[#K, R).
We denote (B) the problem

(B) argmax
T̃ (y,ŷ)

H̃ε(p). (164)

In conclusion, in the following subsections, we will solve
problem (B), which will enable us to solve problem (A).

O. Y ̸= Ŷ , GRADIENT EQUALITY
We observe that Hε(p) is a strictly concave function because
it is the composition of an affine function, p 7→ p+ ε, and a
strictly concave function, the entropy. Since adding a constant
to a function does not change its concavity, H̃ε is also strictly
concave.

Suppose that there exist pε
∈ T̃ (y, ŷ) such that

∂H̃ε(pε)
∂πij

=

∑
k∈I

αk
∂gk (pε)

∂πij
+

∑
k∈J

βk
∂ g̃k (pε)

∂πij

for all (i, j) ∈ K,

(165)

then, according to Lemma 5and the concavity of H̃ε, we have

H̃ε(p)

≤ H̃ε(pε) +
〈
∇H̃ε(pε), p− pε

〉
≤ H̃ε(pε) +

〈∑
k∈I

αk
∂gk (pε)

∂πij
+

∑
k∈J

βk
∂ g̃k (pε)

∂πij
, p− pε

〉
≤ H̃ε(pε) +

∑
k∈I

αk
〈
∇gk

(
pε

)
, p− pε

〉
+

∑
k∈J

βk
〈
∇g̃k

(
pε

)
, p− pε

〉
(166)

We also observe that the functions gi for i ∈ I and g̃j for
j ∈ J are affine functions. As a result, using Lemma 6, and
given that both p and pε are in T̃ (y, ŷ), we have

gk (p)︸ ︷︷ ︸
=0

=

gk (pε)︸ ︷︷ ︸
=0

−
〈
∇gk

(
pε

)
, p− pε

〉
⇒

〈
∇gk

(
pε

)
, p− pε

〉
= 0,

g̃k (p)︸ ︷︷ ︸
=0

=

g̃k (pε)︸ ︷︷ ︸
=0

−
〈
∇g̃k

(
pε

)
, p− pε

〉
⇒

〈
∇g̃k

(
pε

)
, p− pε

〉
= 0.

(167)

Calculations (166) and (167) lead to the conclusion that
0 ≤ H̃ε(pε) − H̃ε(p) for all p in T̃ (y, ŷ). In other words, pε

is a solution of the optimization problem B. Moreover, since
H̃ε is strictly concave, pε is the unique solution. In the next
two subsections, we will present a vector pε that meets these
expected properties.

P. Y ̸= Ŷ , Pε IS IN T̃ (Y , Ŷ )
We now define a vector belonging to T̃ (y, ŷ), which will be a
candidate for satisfying equality (165).

Let pε be a vector of size #K defined by (168), as shown at
the bottom of the next page.

To prove that pε is in T̃ (y, ŷ), the vector pε must satisfy all
the equalities gi(pε) = 0 and g̃j(pε) = 0. Additionally, these
entries must be non-negative.

Firstly, let’s show that for a well-chosen ε, its entries are
non-negative. When ε → 0, all entries of pε become positive:
(169), as shown at the bottom of the next page.

Consequently, we set ε sufficiently small so that the entries
of pε are non-negative.
Secondly, let’s show that g̃j(pε) = 0 for all j ∈ J . Let j

be in J . It follows, (170), as shown at the bottom of the next
page. Additionally, by design, (171), as shown at the bottom
of page 42.

Combining calculations (170) and (171), we have
C∑

i=1:(i,j)∈K
pε
ι(i,j) =

ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) ⇒ g̃j(pε) = 0.

(172)

Thus, g̃j(pε) = 0 for all j ∈ J . Proceeding similarly, we show
that gi(pε) = 0 for all i ∈ I.

In conclusion, pε is in T̃ (y, ŷ).

Q. Y ̸= Ŷ , Pε MEETS GRADIENT EQUALITY
We will exhibit coefficients αi and βj such that (165) is
satisfied.

The partial derivatives, for all (i, j) ∈ K, are (173), as
shown at the bottom of page 42.

For all i ∈ I, for all j ∈ J , we define (174), as shown at
the bottom of page 42.

It is straightforward to see that (165) is met.
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R. Y ̸= Ŷ , SOLUTION
We will finally solve A.

By design of pε, for all p in T̃ (y, ŷ), we have: (175), as
shown at the bottom of the next page.

∑
(i,j)∈K

(πij + ε) = ε#K +

∑
i∈I

∑
j∈J

πij

= ε#K +

∑
i∈I

( ∑
j∈J

πij +
∑

j/∈J :j̸=i

πij︸ ︷︷ ︸
=0, by assumption on J

)

= ε#K +

∑
i∈I

C∑
j=1:j̸=i

πij

= ε#K +

∑
i∈I

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)

= ε#K +

∑
i∈I

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) +

=0, by assumption on I︷ ︸︸ ︷∑
i/∈I

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)︸ ︷︷ ︸

=∥
y

∥y∥1
−min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

= ε#K + ∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1. (162)

pε
ι(i,j) =

(
ŷj

∥ŷ∥1
− min( yj

∥y∥1
,

ŷj
∥ŷ∥1

) + ε#K
)(

yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
) + ε#K

)
ε#K2 + ∥

y
∥y∥1

− min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1

− ε. (168)

lim
ε→0+

pε
ι(i,j) = lim

ε→0+

(
ŷj

∥ŷ∥1
− min( yj

∥y∥1
,

ŷj
∥ŷ∥1

) + ε#K
)(

yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
) + ε#K

)
ε#K2 + ∥

y
∥y∥1

− min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1

− ε

=

( >0,by assumption on J︷ ︸︸ ︷
ŷj

∥ŷ∥1
− min(

yj
∥y∥1

,
ŷj

∥ŷ∥1
)
)( >0,by assumption on I︷ ︸︸ ︷

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)
)

∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
> 0. (169)

C∑
i=1:(i,j)∈K

pε
ι(i,j)

=

C∑
i=1:(i,j)∈K

(
ŷj

∥ŷ∥1
− min( yj

∥y∥1
,

ŷj
∥ŷ∥1

) + ε#K
)(

yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
) + ε#K

)
ε#K2 + ∥

y
∥y∥1

− min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1

− ε

= −ε#K +

( ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) + ε#K

) C∑
i=1:(i,j)∈K

yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
) + ε#K

ε#K2 + ∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1

= −ε#K +

( ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) + ε#K

)ε#K2
+

∑C
i=1:(i,j)∈K

yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
)

ε#K2 + ∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
. (170)
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The last implication holds because H is continuous on
]0, +∞[#K. Moreover, (176), as shown at the bottom of the
next page. It follows that the following inequalities holds for
all p ∈ T̃ (y, ŷ):

H (p) ≤ H (p∗) ⇒ H (p) + γ (y, ŷ)︸ ︷︷ ︸
=H (π )

≤ H (p∗) + γ (y, ŷ)︸ ︷︷ ︸
=H (π∗)

⇒ H (π ) ≤ H (π∗), (177)

where π and π∗ are defined as in (159). It is straightforward
to verify that π∗

= π∗(y, ŷ) and that π∗(y, ŷ) is in T opt(y, ŷ)
(as already proven in Subsection XI-H). This completes the
proof.

APPENDIX I
PROOF OF PROPOSITION 4
By definition, the diagonal entry i is,

f (
y

∥y∥1
,

ŷ
∥ŷ∥1

)ii = min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) (178)

Considering off-diagonal entries ij, according to defini-
tion 1, the deficit in i, denoted as u′

i, is given by

u′
i =


yi

∥y∥1
−

ŷi
∥ŷ∥1

if
ŷi

∥ŷ∥1
<

yi
∥y∥1

0 otherwise
(179)

Similarly, the excess quantity in j, denoted as v′j, is given by

v′j =


ŷj

∥ŷ∥1
−

yj
∥y∥1

if
yj

∥y∥1
<

ŷj
∥ŷ∥1

0 otherwise
(180)

The following relationships are straightforward to verify:

u′
i =

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
), (181)

v′j =
ŷj

∥ŷ∥1
− min(

yj
∥y∥1

,
ŷj

∥ŷ∥1
), (182)

and (183), as shown at the bottom of the next page.

C∑
i=1:(i,j)∈K

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) =

C∑
i∈I

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)

=

C∑
i∈I

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) +

C∑
i/∈I

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
)︸ ︷︷ ︸

=0, by assumption on I

= ∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1. (171)

∂H̃ε(pε)
∂πij

= − ln(pε
ι(i,j) + ε) = − ln

(
ŷj

∥ŷ∥1
− min( yj

∥y∥1
,

ŷj
∥ŷ∥1

) + ε#K
)(

yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
) + ε#K

)
ε#K2 + ∥

y
∥y∥1

− min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1

,

and
∑
k∈I

αk
∂gk (pε)

∂πij
+

∑
k∈J

βk
∂ g̃k (pε)

∂πij
= αi + βj (173)

αi = − ln
yi

∥y∥1
− min( yi

∥y∥1
,

ŷi
∥ŷ∥1

) + ε#K√
ε#K2 + ∥

y
∥y∥1

− min( y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1

, and βj = − ln

ŷj
∥ŷ∥1

− min( yj
∥y∥1

,
ŷj

∥ŷ∥1
) + ε#K√

ε#K2 + ∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
. (174)

H̃ε(p) ≤ H̃ε(pε)

⇒ H (p+ ε) + ε#K + ∥
y

∥y∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1︸ ︷︷ ︸

constant relative to p, see (161) and (162)

≤ H (pε
+ ε) + ε#K + ∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1︸ ︷︷ ︸
constant relative to p, see (161) and (162)

⇒ H (p+ ε) ≤ H (pε
+ ε)

⇒ lim
ε→0+

H (p+ ε) ≤ lim
ε→0+

H (pε
+ ε)

⇒ H ( lim
ε→0+

p+ ε) ≤ H ( lim
ε→0+

pε
+ ε) (175)
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Consequently, (184), as shown at the bottom of the next
page.

Considering the formula in proposition 3 entry by entry
completes the proof.

APPENDIX J
PROOF OF PROPOSITION 5
Let u and v be two vectors in RC

≥0 such that ∥u∥1 = ∥v∥1, and
let α be a positive real value.
By definition, the diagonal entry i is given by:

f (αu, αv)ii = min(αu, αv) = αmin(u, v) = αf (u, v)ii.

(185)

Considering off-diagonal entries ij, we denote:

u′
i =


yi

∥y∥1
−

ŷi
∥ŷ∥1

if
ŷi

∥ŷ∥1
<

yi
∥y∥1

0 otherwise
(186)

v′j =


ŷj

∥ŷ∥1
−

yj
∥y∥1

if
yj

∥y∥1
<

ŷj
∥ŷ∥1

0 otherwise
(187)

It is straightforward to verify that the deficit quantity in i
according to the definition 1 is αu′

i, and the excess quantity
in j is αv′j. It follows that:

f (αu, αv)ij =
αu′

iαv
′
j∑C

k=1 αu′
k

= α
u′
iv

′
j∑C

k=1 u
′
k

= αf (u, v)ij,

(188)

which completes the proof.

APPENDIX K
PROOF OF PROPOSITION 6
Let (y, ŷ) be an instance.

If no common quantity exist between y and ŷ, then
min

(
yk

∥y∥1
,

ŷk
∥ŷ∥1

)
= 0 for all k between 1 and C . Conversely,

if min
(

yk
∥y∥1

,
ŷk

∥ŷ∥1

)
= 0 for all k between 1 and C , then there

is no overlap between y and ŷ. In conclusion, π∗(y, ŷ) has a
zero diagonal if, and only if, there is no overlap between y
and ŷ.

If the class i is underestimated, i.e., ŷi
∥ŷ∥1

<
yi

∥y∥1
, and class

j is overestimated, i.e., yj
∥y∥1

<
ŷj

∥ŷ∥1
, then

0 <
yi

∥y∥1
− min

(
yi

∥y∥1

ŷi
∥ŷ∥1

)
and 0 <

ŷj
∥ŷ∥1

− min
(

yj
∥y∥1

,
ŷj

∥ŷ∥1

)
, (189)

resulting in 0 < π∗(y, ŷ)ij according to (8).
Conversely, if 0 < π∗(y, ŷ)ij, then

0 <

(
yi

∥y∥1
− min

(
yi

∥y∥1
,
ŷi

∥ŷ∥1

))
(

ŷj
∥ŷ∥1

− min
(

yj
∥y∥1

,
ŷj

∥ŷ∥1

))
, (190)

which implies that both terms are non-zero. Consequently,
this means that i is underestimated, whereas j is overesti-
mated. In conclusion, 0 < π∗(y, ŷ)ij if, and only if, i is
underestimated, whereas j is overestimated.

APPENDIX L
PROOF OF PROPOSITION 7
Let y and ŷ be two binary vectors such that yi = 1 with all
other entries as zero, and ŷj = 1 with all other entries as zero,
representing a given instance.

The CM contribution is a matrix of sizeC , such as the entry
ij equals 1, and all other entries are zero. Consequently, its
contribution equals y⊗ ŷ.
The TCM contribution is given by:

π∗(y, ŷ) = diag
(
min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

) )
+

(
y

∥y∥1
− min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

) )
⊗

(
ŷ

∥ŷ∥1
− min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

) )
∥∥∥ y

∥y∥1
− min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥∥∥
1

. (191)

Moreover, in the single-label context, the following equality
holds:

min
(

y
∥y∥1

,
ŷ

∥ŷ∥1

)
= y ∗ ŷ, (192)

lim
ε→0+

p+ ε = p

lim
ε→0+

(pε
+ ε)ι(i,j) =

(
ŷj

∥ŷ∥1
− min( yj

∥y∥1
,

ŷj
∥ŷ∥1

)
)(

yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
)
)

∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
:= p∗

ι(i,j) (176)

C∑
k=1

u′
k = ∥

y
∥y∥1

− min(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1 = ∥
ŷ

∥ŷ∥1
− min(

y
∥y∥1

,
ŷ

∥ŷ∥1
)∥1︸ ︷︷ ︸

according to Lemma 1

. (183)
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where ∗ denotes the Hadamard product (i.e., element-wise
product).

If i = j, then y = ŷ and the second term of the formula is
considered to be 0 by continuous extension. It follows that,

π∗(y, ŷ)ii = diag
(
min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

) )
ii

= min
(

y
∥y∥1

,
ŷ

∥ŷ∥1

)
i
= (y ∗ ŷ)i = (y⊗ ŷ)ii.

(193)

If i ̸= j, then yk ŷk = 0 for all k , leading to y ∗ ŷ being the
null vector. As a result, we have:

π∗(y, ŷ) = diag
(
min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

) )

+

(
y

∥y∥1
− min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

) )
⊗

(
ŷ

∥ŷ∥1
− min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

) )
∥∥∥ y

∥y∥1
− min

(
y

∥y∥1
,

ŷ
∥ŷ∥1

)∥∥∥
1

=

y
∥y∥1

⊗
ŷ

∥ŷ∥1

∥
y

∥y∥1
∥1

= y⊗ ŷ, (194)

because ∥y∥1 = ∥ŷ∥1 = 1.
We have shown that in the single-label context, π∗(y, ŷ) =

y⊗ ŷ, which is the expression of the CM contribution. Since
both the CM and TCM produce the same contribution, they
are equal (whatever the weighting, because in the single-label
context, λ(y, ŷ) is always equal to 1).

APPENDIX M
PROOF OF PROPOSITION 8
Let y and ŷ be an instance. Let Y and Ŷ be the sets of present
classes in y and ŷ, respectively. The four formulas presented
in [2] are presented in set notation; we translate them in vector
form:

(i) In the case where Y = Ŷ , contribution formula is:

diag(y) (195)

(ii) In the case where Y & Ŷ , contribution formula is:

y⊗

(
ŷ− min(y, ŷ)

)
∥ŷ∥1

+ diag(y)
∥y∥1
∥ŷ∥1

(196)

(iii) In the case where Ŷ & Y , contribution formula is:(
y− min(y, ŷ)

)
⊗ ŷ

∥ŷ∥1
+ diag(ŷ) (197)

(iv) In none of the previous cases, the contribution formula
is:(
y− min(y, ŷ)

)
⊗

(
ŷ− min(y, ŷ)

)
∥ŷ− min(y, ŷ)∥1

+ diag
(
min(y, ŷ)

)
(198)

Combining Proposition 4 and 5, it holds:

∥y∥1π∗(y, ŷ) = ∥y∥1f (
y

∥y∥1
,

ŷ
∥ŷ∥1

) = f (y, ŷ
∥y∥1
∥ŷ∥1

). (199)

Considering Definition 1, we set u = y and v = ŷ ∥y∥1
∥ŷ∥1

. The
following relationships are straightforward to verify:

u′
i = yi − min(yi, ŷi

∥y∥1
∥ŷ∥1

), v′j =
ŷj

∥ŷ∥1
− min(yj, ŷj

∥y∥1
∥ŷ∥1

),

(200)

and
C∑
k=1

u′
k = ∥y− min(y, ŷ

∥y∥1
∥ŷ∥1

)∥1. (201)

Consequently, contributions weighted by ∥y∥1 are:

∥y∥1π∗(y, ŷ) = diag
(
min

(
y, ŷ

∥y∥1
∥ŷ∥1

) )
+

(
y− min

(
y, ŷ ∥y∥1

∥ŷ∥1

) )
⊗

(
ŷ ∥y∥1

∥ŷ∥1
− min

(
y, ŷ ∥y∥1

∥ŷ∥1

) )
∥∥∥y− min

(
y, ŷ

∥ŷ∥1

)∥∥∥
1

.

(202)

Moreover, when y = ŷ, the second term is zero by continuous
extension.

In case (i), y = ŷ, it follows that:

∥y∥1π∗(y, ŷ) = diag
(
min

(
y, ŷ

∥y∥1
∥ŷ∥1

) )
= diag(y), (203)

leading to the same formula as MLCM.
In case (ii), ∥y∥1 < ∥ŷ∥1 leading to ∥y∥1/∥ŷ∥1 <

1. Moreover, as yk = 1 implies ŷk = 1, we have
min

(
y, ŷ ∥y∥1

∥ŷ∥1

)
= y ∥y∥1

∥ŷ∥1
. It follows that:

∥y∥1π∗(y, ŷ)

= diag
(
y
∥y∥1
∥ŷ∥1

)
+

(
y− y ∥y∥1

∥ŷ∥1

)
⊗

(
ŷ ∥y∥1

∥ŷ∥1
− y ∥y∥1

∥ŷ∥1

)
∥∥∥y− y ∥y∥1

∥ŷ∥1

∥∥∥
1

= diag(y)
∥y∥1
∥ŷ∥1

+

(
y(1 −

∥y∥1
∥ŷ∥1

)
)

⊗

(
(ŷ− y) ∥y∥1

∥ŷ∥1

)
∥∥∥y(1 −

∥y∥1
∥ŷ∥1

)
∥∥∥
1

f (
y

∥y∥1
,

ŷ
∥ŷ∥1

)ij =
u′
iv

′
j∑C

k=1 u
′
k

=

( yi
∥y∥1

− min( yi
∥y∥1

,
ŷi

∥ŷ∥1
)
)( ŷj

∥ŷ∥1
− min( yj

∥y∥1
,

ŷj
∥ŷ∥1

)
)

∥
y

∥y∥1
− min( y

∥y∥1
,

ŷ
∥ŷ∥1

)∥1
. (184)

VOLUME 12, 2024 181415



J. Erbani et al.: Confusion Matrices: A Unified Theory

= diag(y)
∥y∥1
∥ŷ∥1

+
y⊗ (ŷ− y)

∥ŷ∥1
, (204)

leading to the same formula as MLCM. The equality in case
(iii) can be demonstrated similarly.

In the case (iv), in TCM contribution, ŷ is weighted by ∥y∥1
∥ŷ∥1

whereas it is not the case in MLCM contribution, leading to
different formula.

APPENDIX N
PROOF OF PROPOSITION 9
The framework of paper [27] is the soft-label framework
restricted to probability distributions. Consequently, let y and
ŷ be an instance such as ∥y∥1 = ∥ŷ∥1 = 1. Silván-Cárdenas
and Wang [27] introduced the MIN-LEAST and MIN-MIN
operators to produce their Sub-pixel confusion matrix. The

I (i, j) :=

[
max

(
0, ŷj − min

(
yj, ŷj

)
−

C∑
k=1:k ̸=i

yk − min
(
yk , ŷk

))
, min

(
yi − min

(
yi, ŷi

)
, ŷj − min

(
yj, ŷj

))]
(205)

C∑
k=1:k ̸=j

πkj = πij +

C∑
k=1:k ̸=i,j

πkj︸︷︷︸
≤min

(
yk−min

(
yk ,ŷk

)
,ŷj−min

(
yj,ŷj

))
≤ πij +

C∑
k=1:k ̸=i,j

min
(
yk − min

(
yk , ŷk

)
, ŷj − min

(
yj, ŷj

))︸ ︷︷ ︸
≤yk−min

(
yk ,ŷk

)
≤ πij︸︷︷︸

<ŷj−min
(
yj,ŷj

)
−

∑C
k=1:k ̸=i yk−min

(
yk ,ŷk

)
, by contradiction assumption

+

C∑
k=1:k ̸=i,j

yk − min
(
yk , ŷk

)

< ŷj − min
(
yj, ŷj

)
−

C∑
k=1:k ̸=i

yk − min
(
yk , ŷk

)
+

C∑
k=1:k ̸=i,j

yk − min
(
yk , ŷk

)
︸ ︷︷ ︸

=0
= ŷj − min

(
yj, ŷj

)
, (208)

Ma
ij = M̃a

σ (i)σ (j)

= M̃a
1C

=

[
f
( s
∥s∥1

− m,
ŝ

∥ŝ∥1
− EC

( ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
))

+ m⊗ EC
]
1C

= min
( s1
∥s∥1

− min(
s1

∥s∥1
,
ŝ1

∥ŝ∥1
),

ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
)

︸ ︷︷ ︸
using Lemma 4

= min
( yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
),

ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
)
)

(211)

Mb
ij = M̃b

τ (i)τ (j)

= M̃b
C−1 C

=

[
f
( s
∥s∥1

− m,
ŝ

∥ŝ∥1
− EC

( ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
))

+ m⊗ EC
]
C−1 C

= max
(
0,

t̂C
∥t∥1

− min
(

tC
∥t∥1

,
t̂C

∥t̂∥1

)
−

C∑
k=1:k ̸=C−1

tk
∥t∥1

− min
(

tk
∥t∥1

,
t̂k

∥t̂∥1

) )
︸ ︷︷ ︸

using Lemma 4

= max
(
0,

ŷj
∥ŷ∥1

− min(
yj

∥y∥1
,
ŷj

∥ŷ∥1
) −

C∑
k=1:k ̸=i

yk
∥y∥1

− min(
yk

∥y∥1
,
ŷk

∥ŷ∥1
)
)

(212)
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diagonal of SCM and TCM are the same. The off-diagonal ij
entries are intervals equal to: (205), as shown at the bottom
of the previous page.

We begin to show that for all π ∈ T opt(y, ŷ), for all i and
j between 1 and C with i ̸= j, πij ∈ I (i, j). Once this is
demonstrated, we will show that, for all i and j between 1 and
C with i ̸= j, it exists π and π in T opt(y, ŷ) such as

π ij = max
(
0, ŷj − min

(
yj, ŷj

)
−

C∑
k=1:k ̸=i

yk − min
(
yk , ŷk

))
π ij = min

(
yi − min

(
yi, ŷi

)
, ŷj − min

(
yj, ŷj

))
, (206)

thus ending the proof.

S. INSIDE THE INTERVAL
Let π be in T opt(y, ŷ), let i and j be two different integers
between 1 and C .

We begin by showing that πij is inferior or equal to the
upper bound of I (i, j). Since π ∈ T opt(y, ŷ), all entries of π

are positive, and the marginal sum property is met. Moreover,
because ∥y∥1 = 1, it follows that:

πij ≤

C∑
k=1:k ̸=i

πik = yi − min
(
yi, ŷi

)
,

and πij ≤

C∑
k=1:k ̸=j

πkj = ŷj − min
(
yj, ŷj

)
. (207)

Consequently, πij ≤ min
(
yi−min

(
yi, ŷi

)
, ŷj−min

(
yj, ŷj

))
.

In conclusion, πij is inferior or equal to the upper bound of
I (i, j).
We will show that πij is superior or equal to the lower

bound of I (i, j). We reasoning by contradiction. Assuming
that π is such as πij < max

(
0, ŷj − min

(
yj, ŷj

)
−∑C

k=1:k ̸=i yk − min
(
yk , ŷk

))
, it follows (208), as shown at

the bottom of the previous page.
leading to a contradiction, because

∑C
k=1:k ̸=j πkj = ŷj −

min
(
yj, ŷj

)
. In conclusion, for all π ∈ T opt(y, ŷ), for all i and

j between 1 and C with i ̸= j, πij ∈ I (i, j).

T. EXISTENCE OF ELEMENTS REACHING THE BOUNDS
Let i and j be two different integers between 1 and C . Let σ

and τ be two permutations on the integer set from 1 to C .
The permutation σ is defined by σ = (i 1)(j C), while the
permutation τ is defined by τ = (i C − 1)(j C). Let s, ŝ, t ,
and t̂ be vectors of RC

≥0 such that sσ (k) = yk , ŝσ (k) = ŷk , and
tτ (k) = yk , t̂τ (k) = ŷk for all k from 1 to C (s stands for sigma,
while t stands for tau).
According to Lemma 4, the matrices

M̃a
:= f

( s
∥s∥1

− m,
ŝ

∥ŝ∥1
− EC

( ŝC
∥ŝ∥1

− min(
sC

∥s∥1
,
ŝC

∥ŝ∥1
)
))

+ m⊗ EC , and

M̃b
:= f

( t
∥t∥1

− m,
t̂

∥t̂∥1
− EC

( t̂C
∥t̂∥1

− min(
tC

∥t∥1
,
t̂C

∥t̂∥1
)
))

+ m⊗ EC , (209)

are in T opt(s, ŝ), and T opt(t, t̂) respectively. According to
Lemma 2, the matricesMa, and Mb, defined as,

Ma
ij =M̃a

σ (i)σ (j), and Mb
ij = M̃b

τ (i)τ (j), for i, j = 1 . . .C,

(210)

are both in T opt(y, ŷ).
Let’s show that Ma

ij achieved the upper bound of I (i, j):
(211), as shown at the bottom of the previous page.

In conclusion,Ma
ij achieved the upper bound of I (i, j).

Let’s show that Mb
ij achieved the lower bound of I (i, j):

(212), as shown at the bottom of the previous page.
In conclusion,Mb

ij achieved the lower bound of I (i, j).
SinceMa andMb are in T opt(y, ŷ), this achieved the proof.

APPENDIX O
PROOF OF PROPOSITION 10
Considering the diagonal property, if y

∥y∥1
=

ŷ
∥ŷ∥1

, then
π∗(y, ŷ) is a diagonal matrix by design. Conversely, if y

∥y∥1
̸=

ŷ
∥ŷ∥1

, then there exist classes i and j, with i ̸= j, such that

yi
∥y∥1

− min(
yi

∥y∥1
,
ŷi

∥ŷ∥1
) > 0,

and
ŷj

∥ŷ∥1
− min(

yj
∥y∥1

,
ŷj

∥ŷ∥1
) > 0. (213)

According to Proposition 6, π∗(y, ŷ) ∈ T (y, ŷ) satisfies
π∗(y, ŷ)ij > 0. In conclusion, π∗(y, ŷ) ∈ T (y, ŷ) meets the
diagonal property.

Since π∗(y, ŷ) ∈ T (y, ŷ), the following equalities hold:

C∑
j=1

π∗(y, ŷ)ij =
yi

∥y∥1
,

C∑
i=1

π∗(y, ŷ)ij =
ŷj

∥ŷ∥1
, (214)

proving that π∗(y, ŷ) ∈ T (y, ŷ) meets marginal sum
properties.
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