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ABSTRACT Named Entity Recognition (NER) is a crucial task in Natural Language Processing (NLP),
traditionally addressed through supervised learning, which requires extensive annotated corpora. This
requirement poses challenges, particularly in specialized domains with limited labeled data. In response, the
field has shifted towards lower-resource approaches, such as few-shot and zero-shot learning, which reduce
the dependency on annotated data. However, even zero-shot models require prior knowledge of entity types,
limiting their applicability in exploratory scenarios. In this context, we introduce OWNER, our unsupervised
and open-world NER model, designed to operate without annotated documents or predefined entity types.
OWNER leverages Encoder-only Language Models like BERT to infer and organize entities into dynamic
entity types through a two-step process: mention detection and entity typing. Mention detection employs
a BIO sequence labeling approach to locate entities, while entity typing uses BERT-based embeddings,
refined through contrastive learning, for clustering and naming entity types. This method allows OWNER
to automatically identify and structure unknown entity types, offering advantages for exploratory dataset
analysis and knowledge graph construction. Our experimental evaluation on 13 domain-specific datasets
demonstrates that OWNER surpasses existing LLM-based open-world NERmodels and remains competitive
with more supervised and closed-world zero-shot models. OWNER’s architecture provides a lightweight,
easily deployable solution that advances the state of the art in unsupervised and open-world NER. The source
code of OWNER is publicly available at https://github.com/alteca/OWNER, facilitating future research in
this domain.

INDEX TERMS Named entity recognition, open information extraction, open-world named entity
recognition, unsupervised named entity recognition.

I. INTRODUCTION
Named Entity Recognition (NER) is a fundamental NLP
task that identifies entities in text and classifies them into
specific entity types. Traditionally, NER has been treated
as a supervised task [1], [2]. It poses challenges in specific
domains, such as scientific and biomedical fields, where large
labeled corpora are scarce.

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

Consequently, there is growing interest in low-resource
approaches [3], especially with the rise of Encoder-only
Language Models (encoders) like BERT [4]. Notably, few-
shot models [5], [6], which require only a small set of
annotated documents, achieve impressive performance levels
given their minimal supervision. However, these approaches
still need some annotated documents.

To further reduce the need for supervision, zero-shot
NERs have emerged. These models do not need annotated
documents but only require the specification of expected
entity types, sometimes including their names, descriptions,
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and a few examples. Recent models often transfer knowledge
from a source domain DS , where annotated data is abundant,
to a target domain DT , which lacks labeled documents [7],
[8]. With the advent of Large Language Models (LLMs) [9],
these zero-shot approaches have achieved remarkable results.
For example, the zero-shot model GliNER [10] surpasses the
fully supervised generalist NER spaCy, which was developed
a few years earlier [11]. Nonetheless, zero-shot approaches
still require knowledge of the list of entity types.

Unsupervised and open-world approaches have been
proposed to address this challenge. These approaches do
not require prior knowledge of entity types, and they
automatically organize extracted entities into dynamic and
semantically meaningful types that are not predefined.
In essence, they represent the logical progression beyond
zero-shot models in the effort to reduce supervision. For-
mally, unsupervised and open-world models 1) do not utilize
annotated documents from the target domain and 2) do
not require prior knowledge of entity types, including their
number. This setting represents one of the lowest levels of
supervision for information extraction. It is well-established
in the information extraction domain, particularly in relation
extraction, with consistent research spanning over twenty
years [12], [13], [14], [15], [16]. However, our literature
review indicates that this setting has been relatively unex-
plored for NER. To the best of our knowledge, the most recent
research dates back to 2020 [17] and lacks reproducibility due
to the absence of source code and implementation details.

This article seeks to revisit the unsupervised and
open-world setting in light of recent advancements in NLP.
Our primary research question is:

How can we extract named entities in an unsu-
pervised and open-world setting, specifically 1)
without annotated documents from the target
domain and 2) without prior knowledge of the
entity types to be identified?

At first glance, one might question the relevance of this
study, given the significant advancements made with zero-
shot models. However, we believe there are compelling
motivations.

Open-world and unsupervised NER is advantageous in
exploratory contexts. Its ability to automatically identify and
structure entity types is beneficial for understanding and
analyzing information in an unknown dataset. Specifically,
the model can identify entity types that were not initially
anticipated,1 providing a more comprehensive view of the
dataset than classical closed-world approaches.

This advantage extends to the task of constructing knowl-
edge graphs from documents. The capability to self-structure
and detect novelties facilitates the creation of a more
complete knowledge graph compared to traditional closed-
world methods.

We present OWNER, our ‘‘Unsupervised Open-World
Named Entity Recognition’’ model. OWNER is an

1We experimentally observe this property in Sects. V-B and V-F.

unsupervised and open-world model that infers and structures
entities into non-predefined entity types. Similar to zero-shot
models, OWNER uses annotated data from a source domain
DS , which can be either manually or automatically annotated
documents, to learn named entity recognition and transfer
it to a target domain DT , where no annotated documents
are available. Inspired by the recent successes of the non-
LLMGliNER [10], we explore using Encoder-only Language
Model embeddings, such as BERT [4], to make predictions,
aiming to create a lightweight and easily deployable model.

We divide NER into two subtasks: 1) mention detection,
which locates entities, and 2) entity typing, which classifies
the extracted entities into types. For mention detection,
we implement a BIO sequence labeling NER (see Sect. II),
anticipating it will generalize better in specific domains than
more complex architectures [6].2

For entity typing, we employ an entity embedding
approach inspired by few-shot and zero-shot methods. The
goal is to compute a vector representation for each entity
that is characteristic of its entity type. These embeddings are
generated using BERT prompting and are then clustered to
identify entity types. Clustering relies on k-means, comple-
mented by cluster estimation using the Bayesian Information
Criteria [18] and ternary search. To better isolate entity types
in the target domain, we implement an embedding refinement
approach based on contrastive learning. Finally, we propose
deriving entity cluster names from BERT embeddings using
its Masked Language Modeling (MLM) head.

This simple yet innovative architecture empirically out-
performs LLM-based open-world NER and competes with
closed-world zero-shot models. We expect OWNER to
serve as a strong benchmark for future unsupervised and
open-world NER research.

To summarize our main contributions:
• We propose OWNER, an unsupervised and open-world
NER model that extracts and classifies entities from a
target domain DT without requiring annotations in DT ,
without prior knowledge of the target entity types TT ,
or their number |TT |.

• For entity typing, we introduce a novel architecture
that includes 1) prompt-based entity encoding, 2)
unsupervised clustering to classify entities into types,
and 3) contrastive learning to more precisely identify
entity types.

• Experimental results on 13 domain-specific datasets
demonstrate that OWNER surpasses LLM-based open-
world and unsupervised NER, achieving a 2% – 18%
improvement in AMI, and performs comparably to state-
of-the-art closed-world zero-shot models.

• Qualitative analysis shows that OWNER organizes enti-
ties into semantically coherent clusters closely aligned
with true entity types, and the derived names accurately
describe the content of these clusters.

2Experimental results confirm this hypothesis (see Sect. V-C).
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II. RELATED WORK
Before starting this section, we clarify the mathematical
notations, which are summarized in Table 11. NER analyzes
documents represented as X = [x0, x1, . . . , x|X |−1]. Each
xi ∈ X is a token.3 The objective is to extract entities
e = [xi, . . . , xj] and classify their entity type t . The
set of entity types is denoted by T . We assume access
to labeled documents from a source domain DS with its
set of entity types TS . The goal is to generalize to a
target domain DT , which is associated with the entity
types TT and lacks annotated data. Closed-world models
require knowledge of TT , including their number, names, and
sometimes descriptions, whereas open-world methods such
as OWNER do not have access to this information.

A. FEW-SHOT AND ZERO-SHOT NER
As a reminder, few-shot and zero-shot models assume prior
knowledge of the target entity types list TT . Most approaches
rely on labeled data from a source domain DS to learn and
subsequently transfer to a target domainDT . The domainsDS
and DT may differ stylistically (type of text), semantically
(topic), or in terms of entity types (TS ̸= TT ). DS can
consist of a manually annotated dataset [6], [20], a distantly
labeled dataset [21], or a synthetically generated dataset [8],
[10], [22].

Recent approaches are categorized into two families: 1)
two-stage NER, and 2) one-stage or integrated NER.

Two-stage approaches divide NER into Mention Detection
(MD) and Entity Typing (ET) [6], [23], [24]. Mention
detection identifies spans of X that are entities, while entity
typing classifies the type of each extracted entity. Integrated
models combine MD and ET in a single step to reduce
cascading errors [8], [20], [21], [25], [26]. In practice,
both paradigms achieve state-of-the-art results [6], [25].
Until recently, most approaches used Encoder-only Language
Models (encoders) such as BERT [4]. We now observe
the increasing use of Large Language Models (LLMs) in
these low-resource settings [8], [20], where LLMs have
demonstrated significant effectiveness [9].

1) MENTION DETECTION (MD)
Few-shot and zero-shot approaches adopt architectures
similar to supervised models for mention detection. They
typically implement span-based extractors [5], [10], [27],
although BIO sequence labeling remains in use [6], [24].
These extractors are trained in a supervisedmanner on entities
from DS . The challenge lies in transferring the learned
patterns from DS to entities in DT . BIO sequence labeling
classifies each token x in X as either B (beginning of an
entity), I (inside an entity), orO (outside any entity). A decod-
ing algorithm then reconstructs the entity boundaries based
on the predicted classes. Greedy algorithms are particularly
used with recent language models [6]. Conditional random

3A token can be a word, part of a word, or punctuation as defined by
SentencePiece [19].

fields [28] can also be employed to enhance decoding. The
primary limitation of the BIO approach is its inability to
predict nested entities. This limitation serves as the main
motivation for employing span-based extractors.

In general, span-based extractors evaluate each potential
span in X to identify true entities [2], [5]. They achieve
this by computing vector representations for the start of
span and end of span, typically using embeddings of the
first and last tokens of the candidate span. Zhong et al. [2]
concatenate the start and end embeddings and apply them
in a perceptron to score the candidate span. Wang et al. [5]
replace the perceptron with bilinear layers, enabling more
efficient computations compared to Zhong et al. [2]. Span-
based approaches face challenges with the quadratic number
of possible spans, making candidate span scoring costly for
lengthy documents. Dobrovolskii [29] addresses this issue
with a hybrid approach. Initially, each word in X is classified
as an entity head or not. An entity head is the main word of an
entity, considered by Dobrovolskii as the root of the entity’s
syntactic subtree. This method reduces the quadratic span
complexity to a linear (word) complexity. Once entity heads
are identified, a convolutional neural network determines
the boundaries of each entity. Finally, Zaratiana et al. [30]
propose adapting conditional random fields for span-based
extractors to ensure non-overlapping spans.

2) ENTITY TYPING (ET)
The general principle involves computing vector repre-
sentations of extracted entities (entity embeddings) and
comparing them to those of the exemplars (few-shot) or
the target entity type names or descriptions (zero-shot
and few-shot). Zhang et al. [23] propose using k-nearest
neighbors with few-shot exemplars to identify the entity
type. Prototypical networks [31] are commonly preferred for
classifying entities [5], [6], [27]. These networks compute
entity-type prototypes using the exemplars.

Entity embeddings are derived by aggregating the encoder
embeddings of individual tokens forming the entity in
the case of a BIO extractor [6] or by employing the
span representation generated by the span extractor [5].
Shen et al. [21] and Ding et al. [32] investigate prompting
techniques with BERT (using the [MASK] token) to generate
entity embeddings.

Meta-learning [33] is utilized to enhance transfer learning
efficacy [24]. The approach involves generating numerous
few-shot episodes using annotated data from DS ; each
episode includes a subset of TS , randomly selected few-shot
exemplars associated with TS , and test documents to evaluate
performance. The model is then trained on these episodes
to optimize transfer in the fewest fine-tuning steps possible,
thus the term meta-learning. This method allows effective
fine-tuning even on limited few-shot exemplars by enabling
the model to converge quickly and reliably.

Finally, Liu et al. [3] and Mahapatra et al. [34] explore
adapting encoder embeddings to the target domain. They
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use large amounts of unannotated documents from DT
and fine-tune BERT weights through a masked language
modeling task. Empirically, they observe a correlation
between decreased perplexity and increased NER perfor-
mance.Mahapatra et al. [34] reduce training time required for
domain adaptation by filtering unannotated documents from
DT to retain those more aligned with the actual documents
where entities need to be extracted.

3) LARGE LANGUAGE MODELS
Recently, LLMs [35], [36] have been successfully applied
to few-shot and zero-shot NER, achieving state-of-the-art
results in the zero-shot setting. The proposed methods fall
into three categories: raw prompting, LLM fine-tuning, and
LLM distillation.

a: RAW PROMPTING
First, raw prompting achieves impressive results compared
to previous works [37], [38], [39]. Wang et al. [37] and
Ye et al. [38] require few-shot exemplars to specify the
output format. Wei et al. [39] (ChatIE) propose a multi-turn
framework that operates in a zero-shot setting without the
need for exemplars. Surprisingly, they reverse the usual order
of MD and ET steps. They first ask the LLM which entity
types are present in the document, given a predefined list
of entity types. In subsequent turns, they inquire about the
entities associated with each entity type. Xie et al. [40],
[41] propose automatically generating few-shot instances
using GPT-3.5 [42] and refining them with an ensemble
method, involving multiple generations with temperature and
a voting system to gather entity predictions. They empirically
observe that these automatically generated few-shot instances
significantly enhance zero-shot performance.

The weaknesses in their works [39], [41] include the
multiple turns required to analyze a document, which is costly
when using APIs of the largest LLMs, and the complexity
of scaling to large datasets with numerous documents and
diverse entity types.

b: LLM FINE-TUNING
Sainz et al. [20], Zhou et al. [8], and Wang et al. [43]
investigate the fine-tuning of small LLMs [36], [44], [45]
on manually or synthetically labeled datasets. This approach
creates NER-specialized LLMs that outperform generalist
LLMs while being significantly smaller. Zhou et al. [8]
annotate documents from the Pile corpus [46] using GPT-
3.5, creating the Pile-NER dataset, and fine-tune Vicuna [44]
on it. Their UniNER model surpasses GPT-3.5 in a zero-
shot context. Furthermore, fine-tuning with extensive syn-
thetic data allows them to specify a custom JSON format
that UniNER reliably follows. GoLLIE [20] uses Code-
Llama [47] as its backbone and is fine-tuned on manually
labeled datasets from the news and biomedical domains.
Sainz et al. [20] and Li et al. [48] use a Python class scheme,
where each entity type is specified as a Python class with a

name, a description, and a few examples. They find that the
metadata of description and exemplars positively impacts the
performances of GoLLIE and KnowCoder.

In terms of prediction format, most approaches follow a
surface form extraction scheme [8], [20], [38], [39], except
for GPT-NER [37]. The models output only the entity text,
requiring a subsequent algorithm to localize the entity in
the document. The output format is generally JSON, but
Sainz et al. [20] use Python code, which allows them to
elegantly add metadata in comments, such as descriptions
and exemplars. GPT-NER [37] proposes a sequence labeling
scheme. It asks the LLM to repeat the input document
with special markup delimiting the boundaries of entities:
@@ as the opening tag and ## as the closing tag. This
format eliminates the need for a decoding algorithm, as the
detected entities are localized within the document by design.
However, it is incompatible with a zero-shot setting, as in-
context exemplars are required to describe the output format.

c: LLM DISTILLATION
Zaratiana et al. [10] (GliNER) and Ding et al. [49] (GNER)
fine-tune encoder embeddings (DeBERTa v3 [50]) or full
transformers (Flan-T5 [51]) on GPT-3.5 generated anno-
tations of Pile-NER [8]. GliNER specifically implements
a span-based extractor for MD, coupled with a method
similar to prototypical networks for ET. They achieve very
competitive results compared to the much larger fine-tuned
LLMs UniNER [8] and GoLLIE [20]. This model strikes
an interesting balance between the flexibility of LLM-based
zero-shot NER and the relatively small number of parameters
in encoder embeddings.

d: FOUNDATION MODELS
Finally, an interesting orthogonal axis of analysis is the for-
mation of foundation models. Unlike the traditional approach
of training specifically for a particular domain, there is an
increasing trend towards models pre-trained specifically to
perform entity detection or multiple information extraction
tasks on any domain.

A foundational work in this area is ERNIE [52],
which complements the usual masked language modeling
pre-training task with an entity modeling task. In this task,
entire entities (comprising one or more tokens) are masked
to enhance the contextual association between entities and
their context. For example, it is easy to predict San in the
sentence ‘‘The Golden Gate Bridge is located in [MASK]
Francisco.’’; however, predicting San Francisco from ‘‘The
Golden Gate Bridge is located in [MASK] [MASK].’’
requires more integration of contextual knowledge. Similarly,
Soares et al. [53] propose extending this task to pairs of
entities to improve relation embeddings, and Wang et al. [54]
extend it to two other information extraction tasks: relation
typing and entity typing. These models achieve better results
than raw BERT embeddings for information extraction tasks
and can serve as drop-in replacements.
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With recent advances in LLMs and their impressive gener-
ative capabilities, Bogdanov et al. [55] and Peng et al. [56]
propose using GPT-4 [22] to annotate data and employing
these silver labels to fine-tune BERT embeddings, providing
encoders that can be used as backbones. This principle,
known as targeted distillation, underlies the recent suc-
cesses of UniNER, GliNER, and GNER, all of which use
LLM-generated annotated data to distill smaller models,
whether encoders, decoders, or full transformers.

4) ZERO-SHOT MODELS ARE NOT OPEN-WORLD
In the preceding paragraphs, we have observed that the field
of zero-shot named entity recognition is bustlingwith activity,
with numerous ideas explored and significant advancements
made. However, these approaches fall short of addressing
our research question: they require prior knowledge of entity
types, including their number, names, and sometimes their
descriptions and exemplars. In brief, they are not open-world.

a: CAN ZERO-SHOT MODELS BE DIRECTLY TRANSLATED TO
AN OPEN-WORLD SETTING?
The question that naturally arises is: Is it possible to adapt
zero-shot models to function within a truly open-world
framework? At first glance, one might think that zero-shot
approaches can easily translate to an open-world setting,
as the two are closely related. However, the reality is more
complex. As described in the previous paragraphs, zero-shot
approaches can be divided into fine-tuned models and frozen
LLM prompting.

Fine-tuned approaches (based on encoders [10], full
transformers [49], or LLMs [8]) all require a predefined entity
type schema, which is heavily utilized during their training
process. For example, Ding et al. [49] or Lou et al. [57]
experimentally find that negative sampling (i.e., specifying
entity types not mentioned in the current document) is
key to achieving state-of-the-art performance. However,
if entity types are not specified (as in an open-world setting),
it is impossible to replicate such a training procedure,
nullifying the main contribution of these methods. Similarly,
Zaratiana et al. [10] require a list of predefined entity
types as input because they use the embeddings of the
entity type names for their predictions. Older prototype-based
or nearest-neighbor-based models are also not translatable,
as they require labels to construct the prototypes or propagate
the classes step by step. This category of models is not
easily generalizable to an open-world setting, as removing
the dependency on predefined entity types necessitates the
definition of new input formats or training procedures.

Prompting of frozen LLMs [39], [41] is easier to adapt,
as it involves adjusting the prompt to remove the dependency
on pre-specified entity types (see Sect. IV-A). However, the
impact on performance when entity types are unspecified
in the prompt remains unevaluated, and we expect a
performance drop compared to zero-shot prompting.4

4We experimentally observe this in Sect. V-A.

B. UNSUPERVISED AND OPEN-WORLD NER
1) MOST UNSUPERVISED MODELS ARE NOT OPEN-WORLD
In theory, unsupervised models should be open-world since
the lack of annotated data necessitates auto-structuration
and type discovery techniques, such as clustering. However,
this is not always the case. Historically, unsupervised NER
has implemented rule and pattern-based models [58], [59].
These models are specific to a limited set of entity types,
which restricts the discovery of unspecified types. In fact, the
most recent unsupervised NER models face the same issue
and require prior knowledge of the target entity types [7],
[60], [61], [62]. Formally, they are zero-shot models since
they need the specification of entity types, rather than being
unsupervised approaches.

Jia et al. [60], Liu et al. [61], and Peng et al. [7] attempt to
generalize transfer learning from DS to DT , a method used
in zero-shot settings. They train entity-type-specific models
based on BERT embeddings, which they combine using a
mixture of experts. These models require prior knowledge of
the target entity types and access to labels for each entity type,
albeit from a different domain. CycleNER [62] introduces a
seq-to-seq model with a dual translation mechanism between
text and entities. It consists of two models: S2E, which
translates the document into a list of entities, and E2S, which
generates text from a list of entities. These models are trained
jointly, with S2E retained for predictions. CycleNER also
needs to know the target entity types beforehand and requires
lists of entities from DT .

In conclusion, these purportedly unsupervised models are
neither truly unsupervised nor open-world, as they require a
predefined specification of the target entity types. They are,
in fact, more aligned with a zero-shot setting.

2) TRUE UNSUPERVISED AND OPEN-WORLD NER
To the best of our knowledge, only UNER [17] is com-
patible with true unsupervised and open-world scenarios.
UNER employs clustering for mention detection and uses
self-learning with autoencoders for entity typing. However,
UNER is prone to drifting due to its reliance on self-learning
and requires careful hyperparameter tuning, such as the num-
ber of training steps and learning rate, to avoid catastrophic
performance drops. Unfortunately, UNER lacks both source
code and a detailed explanation of how these hyperparameters
are adjusted in an unsupervised manner, rendering their
results unreproducible.

Interestingly, related fields such as unsupervised and
few-shot relation extraction also face similar critiques regard-
ing hyperparameter tuning [14], [63]. These fields depend on
training procedures, like self-learning, that are sensitive to
hyperparameter settings, which cannot be optimized without
access to labeled data.

C. CONCLUSION AND RESEARCH GAPS
This concludes our literature review. Firstly, we observe
remarkable dynamism in the research on zero-shot models,
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characterized by a wide array of experiments involving
LLMs [20], [48], full transformers [49], and encoders [10].
However, zero-shot models are not open-world and thus fail
to address our research question. Moreover, most zero-shot
approaches cannot be adapted to an open-world framework,
as the specification of entity types is integral to their training
procedure.

Similarly, so-called unsupervised approaches suffer from
the same issue: they are unable to detect entity types not
defined in the training set.

Throughout our literature review, we found only one
unsupervised and open-world approach, UNER [17]. Yet,
it has several shortcomings. Currently, the method is not
reproducible due to the lack of source code and experimental
details. Additionally, it relies on self-learning techniques
known for their instability and hyperparameters that are
difficult, if not impossible, to adjust. Genest et al. [14]
highlighted the same problem in the field of unsupervised
relation extraction.

In conclusion, numerous challenges persist in the task of
unsupervised and open-world NER, motivating us to present
OWNER.

III. DESCRIPTION OF OWNER
OWNER aims to extract and classify entities from documents
X of DT in an unsupervised and open-world setting. Given
X , the objective is to identify the spans e = [xi, . . . , xj] ∈ X
that constitute entities and determine the type t for each e.
OWNER operates without prior knowledge of DT and lacks
access to:

• annotated documents of DT ,
• the set of entity types TT ,
• the number of entity types |TT |.
Similar to recent zero-shot and few-shot models [8],

[10], [21], OWNER utilizes a cross-domain transfer-learning
approach. The strategy involves learning the NER task on a
source domain DS , where annotated data is available, and
transferring this knowledge to DT . DS differs from DT in
style, semantics, and/or entity type perspective (TS ̸= TT ).
We advance beyond zero-shot and few-shot methodologies
by not predefining TT .

As illustrated in Fig. 1, OWNER employs a two-step
process:

1) Mention detection. It identifies the spans e within X
that are entities.

2) Entity typing. It classifies the type t for each detected
entity. In practice, OWNER identifies clusters of
entities that share the same type t .

A. MENTION DETECTION (MD)
Mention detection identifies entities e within a given
document X .

As discussed in the previous section, there are two pri-
mary prediction paradigms for MD: BIO sequence labeling
extractors [5], [10], [27] and span-based extractors [6], [24].
Generally, span-based extractors perform slightly better than

BIO models in supervised settings [2], [10]. However, since
we lack supervision for DT , we opt to use BIO sequence
labeling for MD due to its lower expressivity and complexity
compared to span-based models. This choice is expected to
enhance generalizability to unseen domains and new entity
types [6]. BIO labeling models classify each token xi ∈ X as
B (beginning of an entity), I (inside an entity), or O (outside
any entity).

We utilize encoder embeddings from pre-trained language
models like BERT [4], combined with a linear classifier:

fMD(xi,X) = σ (Encoder(xi,X)W + b), (1)

where W and b are learned weights, Encoder(xi,X) is the
encoder embedding of xi in the context of X , and σ is
the softmax function. We fine-tune fMD, including encoder
weights,W , and b, on annotated documents fromDS . Finally,
BIO labels are decoded to identify the boundaries of each
entity (the indices of its first and last tokens).

In fact, MD is the primary motivation for annotated data.
The only MD model that operates without labels relies on
self-learning [17]. However, self-learning tends to drift when
overtrained. Preventing drift requires careful hyperparameter
tuning, particularly concerning the number of training steps
and the learning rate. Luo et al. [17] do not specify how to
adjust these parameters without external annotated X from
DT . Therefore, we propose using annotated documents from
DS to train MD in a supervised, cross-domain fashion to
reduce the risk of unstable results. Annotations for DS can
originate from manually labeled datasets, distantly annotated
datasets [21], or synthetically generated data [8]. In this
article, we train OWNER on both manually labeled and
synthetically generated datasets (see Sect. V-B).

B. ENTITY TYPING (ET)
Entity typing classifies the entities previously extracted
through mention detection. In an unsupervised setting, the
objective is to group entities that share the same entity type
t ∈ TT . As depicted in Fig. 1, ET consists of three modules.
Thesemodules utilizewell-established technologies that have
demonstrated efficacy in NER, such as BERT prompting,
clustering, and contrastive learning [64]. To our knowledge,
these technologies have never been combined in thismanner,5

and it is their combination that facilitates open-world and
unsupervised entity typing.

1) ENTITY ENCODER
The first module of ET is the entity encoder, which computes
a vector representation (or entity embedding) for the current
entity. We aim for this embedding to represent the entity
type: two entities e1 and e2 with similar embeddings should
share the same type t . Conversely, entities with different
types t1 and t2 should have distinct embeddings. To encode
entities, we propose using BERT prompting [14], [65].
A prompt P is a text containing one [MASK] token, which

5UNER [17] uses a distinctly different auto-encoder approach for ET.
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FIGURE 1. Overall architecture of OWNER.

the encoder processes. [MASK] signifies an unknown token,
and the encoder computes an embedding representative of
the missing word. By carefully designing P , we can prompt
the encoder to determine the type t of the current entity
and use the [MASK] embedding as our entity embedding.
The formulation of P is crucial for prompting performance
and is typically adjusted using labels from DT [66]. In our
unsupervised setting, we choose not to tune it and select the
simplest template possible:

P(e,X) = ‘‘{X} {e} is a [MASK].’’, (2)

with {X} variable substitution, where {X} is replaced by
the text of X . For instance (also shown in Fig. 1):

X = ‘‘The primary effectors of Gβγare various iron

channels, such as GIRKs.′′,

e = ‘‘Gβγ′′,

P(e,X) = ‘‘The primary effectors of Gβγare various

iron channels, such as GIRKs. Gβγis a[MASK].′′

The entity representation is then computed as the embed-
ding of [MASK] in the context of the prompt P(e,X):

fET(e,X) = Encoder([MASK],P(e,X)). (3)

The choice of encoder embeddings over LLM or full
transformer embeddings is motivated by two reasons. First,
it allows us to define a fill-in-the-blank task that compels
the model to predict precisely one word, likely describing
the entity type. This approach simplifies the computation
of the entity embedding and eliminates the need for aggrega-
tion techniques (e.g., mean pooling, attention [29]). Second,
encoders are significantly smaller than LLMs (10–100 times
smaller), making themmore suitable for resource-constrained
environments.

2) ENTITY CLUSTERING
Once all entities extracted in DT are encoded using the
previous module, we cluster the embeddings to identify
groups of entities that are closely related and thus likely
to share the same type t ∈ TT . We apply the simple

k-means algorithm [67], [68]. Since the number of entity
types is unknown, we must estimate the number of entity
types (clusters) k . The only unsupervised prior work,
UNER [17], required k to be predetermined. This requirement
is counter-intuitive and unrealistic: if TT is unknown,
we cannot ascertain |TT | (and thus k). Therefore, we aim to
estimate k automatically.

Regarding the choice of the clustering algorithm, Gen-
est et al. [14] observed empirically that k-means was the best-
performing algorithm for unsupervised relation extraction.
More complex clustering algorithms yielded lower results,
likely due to their increased expressivity, which tended to
model noise instead of valuable information. We review
the suitability of k-means in comparison to other clustering
algorithms (GaussianMixtureModels [69], HDBSCAN [70],
OPTICS [71]) in App. C.

a: BRUTE-FORCE ESTIMATION
Interestingly, k-means can be viewed as a simplification
and approximation of a spherical Gaussian Mixture Model
(GMM) [69]. The primary distinction lies in cluster mem-
bership: with k-means, each point belongs exclusively to one
cluster (Dirac probability distribution), whereas GMMallows
for soft-clustering assignments. One method to estimate the
number of clusters in a GMM is to set an upper bound K ,
compute a clustering for each k, 2 ≤ k ≤ K , calculate the
Bayesian Information Criteria (BIC) [18] for each clustering,
and select k̂ that minimizes BIC. BIC evaluates the clustering
quality and adjusts it according to the model’s complexity.
Indeed, examining the right-hand side of Eq. (4), the left term
assesses the fit’s quality, while the right term estimates the
model’s complexity. BIC finds an optimal balance between
clustering quality and complexity (number of clusters).
We propose applying this same procedure to estimate the
number of clusters with k-means, using the k-means BIC
formula of Onumanyi et al. [72]:

BIC = n ln(
RSS
n

) + k ln(n), (4)
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RSS =

∑
0≤i<n

(fET(ei,X i) − ci)2, (5)

with n representing the number of entities ei extracted
by MD, X i denoting the document containing ei, and ci
being the centroid of the cluster containing ei. We refer to
this procedure as brute force cluster estimation. This is the
primary approach we use during OWNER’s evaluation.

b: TERNARY SEARCH
A limitation of the previous approach is that it requires
computing a clustering for each 2 ≤ k ≤ K , which
is computationally expensive. Empirically, we find that the
BIC curve for ET is smooth, globally convex, and has a
single minimum (see Fig. 9 (a)). This was observed across
the 13 DT datasets used during evaluation (see Sect. IV-B),
with different encoder embeddings, and for every variation
of OWNER. Given this experimental observation, it is
possible to find the global minimum BIC without testing
every possible k . One such method is the ternary search.
We propose implementing this method and refer to it as
ternary search cluster estimation. The ternary search follows
an iterative approach, with each cycle as follows:

1) The input consists of a lower bound kmin and an upper
bound kmax for the number of clusters.

2) Select k1 and k2 such that they divide the search space
between kmin and kmax into thirds.

3) Compute the clustering and calculate the BIC for k1 and
k2.

4) If k1 has a lower BIC than k2, set kmax = k2; otherwise,
set kmin = k1.

The cycle repeats until kmax = kmin. With each cycle, the
search space is reduced by a third, resulting in a logarithmic
complexity of O(log3(K ) · k-means), compared to O(K ·

k-means) for the brute force method.
In practice, three improvements can be made. First, if the

lowest BIC is at kmin, we set kmax = k1; conversely, if the
lowest BIC is at kmax , we set kmin = k2. This allows us to
eliminate two-thirds of the search space in one cycle.

Secondly, we propose removing the need to set a fixed
upper bound K . We initially estimate kmax =

√
n and permit

the ternary search to increase kmax if the minimum BIC is
located beyond it. During the first cycle, if the lowest BIC is at
kmax , instead of updating kmin, we set kmax = kmax+

kmax−kmin
3 .

This adjustment can continue in subsequent cycles until the
lowest BIC is no longer at kmax .
Finally, the BIC curve is not entirely smooth locally.

To improve the accuracy of the minimum estimation, when
kmin and kmax are close (e.g., kmax − kmin ≤ 5), we compute
every clustering for kmin ≤ k ≤ kmax and select k̂ with the
lowest BIC.

The pseudocode for the ternary search cluster estimation
is shown in Fig. 2. The function call from the user should
be Ternary-Search(1,

√
n, true). In practice, memoization is

implemented to prevent recomputing the BIC multiple times
for the same k , but this is omitted in the figure for clarity.

3) EMBEDDING REFINEMENT (ER)
ET is not trained using labeled documents. However, since
MD uses labeled data in DT , we can also utilize this data
for ET to more clearly isolate entity types during clustering.
Contrastive learning has been applied for this purpose in
the context of low-resource NER [25], [26]. The objective
is to bring entities of the same type closer together and
separate entities of different types by optimizing encoder
representations. Existing models apply contrastive learning
on the annotated data of DT , which we do not have.
Therefore, we propose optimizing the contrastive loss on
entities of DS , anticipating that the reorganized embedding
space will also benefit entities in DT .

We implement the widely used triplet margin loss LTM
[73]. LTM considers entity triplets (ea, e+, e−). ea is called
the anchor. The positive entity e+ shares the same type as the
anchor ea, while the negative entity e− has a different type
than ea. The objective of LTM is to ensure that e+ is closer to
ea than e− by a certain margin. The loss is defined as:

LTM(ea, e+, e−) = max[0, d(ea, e+) − d(ea, e−) + 1] (6)

where d(ea, e+) is the Euclidean distance between fET(ea,X)
and fET(e+,X). fET weights are fine-tuned on entities of DS
usingLTM. We set theLTM margin at 1. Empirically, we have
not found that the margin significantly impacts performance.

Contrary to the usual encoder/BERT fine-tuning, a larger
batch size is beneficial with contrastive learning [74], as it
helps regularize the embedding space reorganization. The
limiting factor for increasing the batch size with ET is entity
encoding. For each triplet (ea, e+, e−), three prompts P need
to be encoded. This requires a substantial GPU memory
footprint, hindering large batch sizes. To address this issue,
we change our approach and consider batches of entities
instead of batches of triplets. Each entity e is associated with
the document Xe ∈ DS in which it appears and its type
te ∈ TS . We encode one prompt for each entity. Then, we find
all valid triplets within the batch, adhering to the condition
(te+ = tea ) ∧ (te− ̸= tea ). In our experimental setup, we can
encode 128 entities per batch. Without this optimization, one
batch comprises 42 triplets, andLTM does not converge.With
this optimization, one batch contains, on average, more than
100 000 valid triplets.

C. NAMING THE CLUSTERS
The final step is to name the clusters to describe the entity
types that have been extracted. It is important to note that
previous unsupervised and open-world NERs [17], as well as
related relation extraction models [15], [16], do not name the
clusters. These models leave the task of naming the clusters
to the user, who must inspect the entities within. We aim
to advance this process by suggesting names that illustrate
the cluster, which the user can then refine and complete.
We propose two methods for this purpose.
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FIGURE 2. Pseudocode for the ternary search algorithm estimating the
number of clusters.

1) USING BERT
To reiterate, our entity encoder employs BERT prompting,
using the prompt defined in Eq. (2), to generate entity
embeddings. Examining the prompt’s formulation reveals
that BERT will likely replace the [MASK] token with a word
describing the entity type.

To name our clusters, we propose using BERT’s Masked
Language Model (MLM) head to predict the masked token
of the prompt, leveraging the entity embedding. By iterating
over each entity within a cluster, we can identify the most
frequent predicted words that seem to describe it.

The main advantage of this method is that it does not
require the use of LLMs and relies solely on the encoder.
Moreover, since the embeddings have already been computed
for entity typing, deriving name suggestions for the cluster is
highly cost-effective.

However, there is a limitation. The prompt from Eq. (2)
contains only a single [MASK] token. Thus, BERT will
predict only one token, which could be a word or a sub-word.
While some general and specific entity types can be expressed
in a single token (such as person, location, organization,
protein, algorithm, etc.), not all can (e.g., astronomical
object, programming language, chemical element). This
raises questions about the relevance of the predicted tokens
for multi-word entity types. It will be interesting to observe
how this method performs in practical experiments.

2) USING LLMs
Our second approach involves selecting a sample of entities
(of size n) from a cluster and providing it as input to an LLM
with the prompt described in Fig. 3. This prompt instructs the
LLM to identify the entity type that encompasses the various
entities presented. This approach could potentially address

FIGURE 3. LLM prompt for generating a name to describe an entity type
cluster.

FIGURE 4. UniNER Uns prompt. Zhou et al. [8] proposed it to annotate the
Pile-NER dataset.

the limitations of the method discussed in the previous
paragraph because it can easily predict multi-word entity type
names.

However, it is more expensive and resource-intensive
because it requires the use of an LLM. Nonetheless,
we highlight that zero-shot NER approaches based on LLMs
require at least one LLM call per document (O(|DT |)),
or even one call per document and entity type (O(|DT | ·

|TT |)). In contrast, our method requires only one call per
cluster (O(k̂) ∼ O(|TT |)), making it significantly more cost-
effective.

IV. EXPERIMENTAL SETUP
A. BASELINES
Luo et al. [17] did not release the source code for UNER,
the only comparable unsupervised and open-world baseline,
and we were unable to reproduce their results. To address
this limitation, we propose an evaluation focusing on two
directions.

1) ZERO-SHOT BASELINES (CLOSED-WORLD)
First, we compare OWNER with state-of-the-art zero-shot
NER models. These models are more supervised than
OWNER, as they have access to the list of entity types, and
are thus expected to achieve better results than ours. However,
they provide a context for evaluating the performance of
unsupervised and open-world NER against more common
and standard low-resource approaches.

We include UniNER [8], GoLLIE [20], and ChatIE [39].
UniNER and GoLLIE are LLMs fine-tuned on synthetically
or manually labeled datasets, whereas ChatIE employs raw
prompting. We also test GliNER L [10] and GNER [49],
which respectively use an encoder (DeBERTav3 [50]) and a
full transformer (Flan-T5 [51], [75]), both fine-tuned on the
same dataset as UniNER.

We report the baselines’ backbones and the number of
parameters in Table 2.
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FIGURE 5. ChatIE Uns prompt. ChatIE Uns employs a multi-turn
question-answering setup, using the first prompt to identify entity types
mentioned in the current document, followed by subsequent questions to
identify entities for each elicited entity type.

2) UNSUPERVISED BASELINES CREATION
Since no unsupervised and open-world baseline is currently
available for evaluation, we propose creating two baselines
derived from zero-shot NERs. As discussed in Sect. II-A4,
not all zero-shot models can be adapted for use in an open-
world setting. Only LLM prompting can be directly adapted
to function in an unsupervised and open-world manner.

First, Zhou et al. [8] annotated the Pile-NER dataset by
prompting GPT-3.5 without specifying entity types, thereby
operating in an open-world setting. The prompt they used
is shown in Fig. 4. They did not evaluate this approach,
so we include it to provide reference values for open-world
GPT-3.5 prompting. We refer to this baseline as UniNER
Uns. We also evaluate UniNER Uns using the more recent
GPT-4o mini (UniNER Uns (GPT-4o mini)). Additionally,
we attempted to replace GPT with Llama 3.1 8B Instruct
and Qwen 2.5 7B Instruct, but these smaller models failed
to adhere to the format specified in the prompt, resulting in
null scores.

Second, the dual-stage method implemented by ChatIE
[39], involving type elicitation and entity extraction, can be
adapted for use in an unsupervised setting. Initially, type
elicitation requires the list of entity types TT , but we can
reformulate it to eliminate this dependency. The prompts we
developed are shown in Fig. 5. We refer to this baseline as
ChatIE Uns. We also evaluate ChatIE Uns using GPT-4omini
(ChatIE Uns (GPT-4o mini)) and the open-weight Llama 3.1
8B Instruct (ChatIE Uns (Llama 3.1)).6 ChatIE Uns allows
us to compare the performance of very similar zero-shot
(ChatIE) and open-world (ChatIEUns)models and to observe
the impact of not specifying entity types beforehand.

3) IMPLEMENTATION DETAILS
We utilize the source code and hyperparameter values
specified by the authors of the zero-shot models. For
the adaptations of the unsupervised models, we apply the

6We also evaluated Qwen 2.5 7B Instruct, but found its performance lower
than Llama 3.1 8B Instruct.

hyperparameter values defined by Wei et al. [39] and
Zhou et al. [8]. The temperature is set to 0. The backbones
and language model versions are detailed in Table 2.

B. DATASETS
1) TARGET DOMAIN DT
Specific domains where annotated data is scarce or absent
represent the primary use cases for unsupervised and open-
world NER. We focus on datasets that differ from DS stylis-
tically (types of text), semantically (topics), and from the
entity type perspective (unseen entity types). Consequently,
we evaluate OWNER on 13 domain-specific datasets:

• Five CrossNER datasets [3] (AI, Literature, Music,
Politics, and Science). These datasets cover specific
topics (scientific and literary) and unseen entity types.

• Two MIT datasets [76] (Movie and Restaurant). These
datasets encompass new styles of text (reviews and
search engine queries), specific topics, and unseen entity
types.

• FabNER [77], which includes physics and chemistry
articles labeled with scientific entity types.

• GENIA [78] and i2b2 [79], which contain biomedical
articles (sourced from PubMed) annotated with biomed-
ical entities.

• GENTLE [80] and GUM [81], which cover unusual
styles of text, such as dictionary entries, travel guides,
legal notes, or poetry.

• WNUT 17 [82], which comprises social network posts.
These datasets encompass a wide spectrum of text types

(encyclopedic, scientific, biomedical, social networks, cus-
tomer reviews, dictionary entries, etc.); domains (computer
science, physics, chemistry, natural science, biomedical,
literature, music, etc.); and entity types (algorithm, protein,
cell type, poem,mechanical property, animal, political party,
among many others). This diversity allows us to gain a com-
prehensive understanding of the quality and generalizability
of OWNER. Full dataset statistics are available in App. E.

2) SOURCE DOMAIN DS
We propose to train OWNER using two datasets: CoNLL-
2003 [1] and Pile-NER [8]. These datasets represent two
different approaches to the unsupervised setting.

CoNLL-2003 (hereafter referred to as CoNLL) embodies
the cross-domain perspective. It contains general-domain
newspaper articles that are manually annotated with four
entity types (person, location, organization, and misc).
CoNLL is chosen to be stylistically, semantically, and in
terms of entity types, distinct from the DT datasets. This
allows us to assess the cross-domain capabilities of OWNER.

Pile-NER represents the synthetic data perspective. It con-
sists of 50 000 documents collected from the Pile corpus [46]
and automatically annotated by GPT-3.5,7 resulting in 13 000

7Interestingly, Gao et al. [46] used real documents from the Pile corpus
instead of generating them with GPT-3.5. They argue that achieving diverse
documents and broad domain coverage with LLM-generated documents is
challenging, which may lead to lower performance.
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fine-grained entity types. The premise is that large and
diverse DT datasets enhance generalizability and help bridge
the stylistic, semantic, or entity type gap between DS and
DT . Moreover, since the annotation process is automatic
and does not require human intervention, it is neither
time-consuming nor costly. In fact, recent few-shot and zero-
shot models utilize large amounts of automatically annotated
DS data (e.g., UniNER, GliNER L, and GNER train on Pile-
NER), and the results demonstrate the advantages of these
automatically labeled corpora.

C. METRICS
We categorize evaluation metrics into two components:

1) Mention detection. These metrics assess whether the
model accurately extracts entities, disregarding their
types.

2) Entity typing. These metrics evaluate whether the
model accurately classifies the entity types.

Entity typing metrics are also used to assess end-to-end
NER, which integrates mention detection and entity typing.

1) MENTION DETECTION
Following previous studies (e.g., Zhong et al. [2]), we regard
a predicted entity as correct if its boundaries match those of
a ground truth entity:

ê = e ⇐⇒ start(ê) = start(e) ∧ end(ê) = end(e), (7)

where start(e) (and respectively end(e)) is the index in X
of the first (and respectively last) token of e. In summary,
a predicted entity matches a true entity if its starting and
ending token indices coincide with those of the true entity.
We define true positives (TP), false positives (FP), and false
negatives (FN) as follows:

TP =

∑
ê

∑
e

1{ê=e}, (8)

FP =

∑
ê

1{¬∃e s.t. ê=e}, (9)

FN =

∑
e

1{¬∃ê s.t. ê=e}, (10)

where 1{·} is the indicator function, which equals one if the
statement is true and zero otherwise. By convention, this
approach excludes true negatives (TN).8 In this single-label
prediction context, the F1 score equals accuracy. We have:

P =
TP

TP+FP
, (11)

R =
TP

TP+FN
, (12)

F1 =
2 PR
P+R

. (13)

8A TN is a span that is neither a true entity nor a predicted one. Since the
number of spans increases quadratically with the document size and entities
are relatively rare, TNs would overshadow TPs, FPs, and FNs, resulting in
non-discriminative scores. Hence, the consensus (e.g., [2], [10]) is to omit
true negatives.

BIO mention detection models, such as OWNER and
GNER, must first decode the BIO labels to determine the
boundaries of the entities. An entity begins with the presence
of a B label, and the end is marked by the last token in the
contiguous series of I labels following the B label.

Recently, some LLM-based approaches [8], [20], [39] have
replaced the boundary check with a surface form check,
which involves verifying that a predicted entity has the
same text as a true entity. This change is less precise than
an exact boundary check and can be problematic when
multiple entities with the same surface form but different
types appear in the same document (e.g., in ‘‘French persons
speak French,’’ the first French refers to a nationality, while
the second refers to a language). In our evaluation, we assess
all baselines and OWNER using the same boundary check
metrics to ensure maximum fairness.

2) ENTITY TYPING AND END-TO-END NER
Since open-world methods automatically determine entity
types, the set of predicted clusters (predicted entity types)
does not necessarily match the set of true entity types. More-
over, predicted clusters cannot be directly associated with
true entity types because there is no direct correspondence
between cluster IDs and class IDs. Consequently, traditional
classification metrics such as precision, recall, and F1 score
are unsuitable for evaluating open-world NER models.

Inspired by the standard evaluation procedure for unsuper-
vised and open-world relation extraction models (e.g., [14],
[15]), we employ clustering metrics to evaluate entity typing
and NER. These metrics, unlike classification metrics, are
robust to permutations (i.e., different cluster IDs do not affect
the final score) and to partial matches (e.g., when multiple
clusters correspond to a single class or vice versa). Two
widely used metrics for comparing clusterings with labels are
the Adjusted Rand Index (ARI) [83], [84] and the Adjusted
Mutual Information (AMI) [85].9 In our experiments with
unbalanced datasets, Romano et al. [88] suggest using AMI
over ARI. AMI is adjusted for chance, meaning that random
clustering will reliably yield a score close to 0. Furthermore,
it is defined over the range [−1, 1]: scores below zero indicate
methods less effective than random clustering.

We recall the definition of AMI. AMI is the adjustment for
chance of the Mutual Information (MI) score. MI measures
the mutual dependence between the true entity type and
predicted entity type random variables. It is defined as:

MI(t, t̂) = H(t) − H(t|t̂),

= H(t̂) − H(t̂|t), (14)

where H(t) denotes the Shannon entropy, and H(t|t̂) repre-
sents the conditional entropy [85]. In these definitions, e, ê, t ,
and t̂ are treated as random variables. Although e and ê are not
explicitly mentioned in the equations, t depends on e, and t̂

9We acknowledge other metrics like the V-measure [86] or the B3 [87].
However, these are not adjusted for chance (see subsequent paragraphs for
an explanation).
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depends on ê. To determine the actual values, the reader must
enumerate all e ∈ D and ê ∈ D. Entropy and conditional
entropy are defined as follows:

H(t) = −

∑
t

P(t) log2 P(t), (15)

H(t̂|t) = −

∑
t,t̂

P(t, t̂) log2
P(t, t̂)
P(t)

. (16)

Adjusted Mutual Information (AMI) adjusts the mutual
information for chance, ensuring that a random clustering
yields scores close to or equal to zero. It is defined as:

AMI(t, t̂) =
MI(t, t̂) − 𝔼t ′,t̂ ′{MI(t ′, t̂ ′)}

max{H(t),H(t̂)} − 𝔼t ′,t̂ ′{MI(t ′, t̂ ′)}
. (17)

Here, 𝔼t ′,t̂ ′{MI(t ′, t̂ ′)} represents the expected MI between
two random clusterings, estimated using a hypergeometric
model of randomness [89].

Finally, the correspondences between the true and pre-
dicted entities are established using the equality defined in
Eq. (7). A predicted placeholder with a specific error entity
type is created for the true entities that were not predicted
(FN). Conversely, for predicted entities that do not exist in
the ground truth (FP), a true placeholder with a specific error
entity type is created.

D. IMPLEMENTATION DETAILS
OWNER adopts a train once, test anywhere [90] methodol-
ogy: it requires training only once on DS and can then be
applied to multiple DT datasets without additional effort.10

Regarding hyperparameters, since OWNER is unsupervised,
we cannot use validation data to adjust them.We choose stan-
dard hyperparameter values as defined by Devlin et al. [4].

1) MENTION DETECTION
We utilize DeBERTa v3 embeddings [50], [91],11 training the
model for 4 epochs using the Adam optimizer [92]. We apply
a decreasing linear schedule without warmup, a learning rate
of 2 × 10−5, a batch size of 32, and a dropout rate of p =

0.1 between the encoder and the linear classifier.

2) ENTITY TYPING
We employ BERT embeddings.11 We use the simplest prompt
possible, defined in Eq. (2), and train the model for 4 epochs
using the Adam optimizer [92]. We apply a decreasing linear
schedule without warmup, a learning rate of 2 × 10−5, and a
batch size of 128 as discussed in Sect. III-B3, with a dropout
rate of p = 0.1. For brute force cluster estimation, we set
the upper bound K to 50 and increase it if k̂ is close to K :
K = 100 for GUM,K = 100 for OWNER trained on CoNLL
and tested on i2b2, and K = 500 for Pile-NER and i2b2.

10This does not imply perfect performance on distant domains, but rather
that no adaptation or retraining is necessary to make predictions in an unseen
domain.

11 The choice of encoder embeddings is reviewed in App. B.

3) CLUSTER NAMING
For the BERT-based method, we use the same hyperparam-
eters as outlined in the previous paragraph. With LLM-base
naming, we employ the prompt defined in Fig. 3 using LLama
3.1 8B Instruct.12 The temperature is set to 0 and the sample
size n is set to 16.

4) COMPUTATIONAL RESOURCES
Experiments were conducted on a single machine with
12 cores, 128GB of RAM, and a GPUwith 48GB of VRAM.
The required computational time is equivalent to BERT
fine-tuning and depends on the size of the training dataset.
With CoNLL, training typically lasts 50min, and with Pile-
NER, 5 h.

V. RESULTS AND ANALYSIS
For OWNER, each experiment is repeated using five random
seeds.We report the average value and the standard deviation.

A. COMPARISON WITH THE BASELINES
We first evaluate OWNER against unsupervised and
zero-shot baselines on the 13 DT datasets. The NER
evaluation results, covering mention detection and entity
typing, are presented in Fig. 6 and Table 1.

1) UNSUPERVISED OPEN-WORLD BASELINES
Overall, OWNER (Pile-NER) outperforms all open-world
baselines, with an average AMI gap of 2.1% compared to
UniNERUns (GPT-4omini), 4.4% compared to UniNER

Uns, 11% compared to ChatIE Uns (GPT-4o mini), 13%
compared to ChatIE Uns (Llama 3.1), and 18% compared
to ChatIE Uns.

Even OWNER (CoNLL), trained on a much smaller and
more distant DT dataset, surpasses the open-world baselines
with at least a 1.3% gap (UniNER Uns (GPT-4o mini)).

This demonstrates that our architecture effectively detects
and types entities in an open-world and unsupervised setting.
This result is significant when considering the size of
the compared baselines relative to their performances (see
Table 2). OWNER is the smallest model with its 110M
parameters, yet it outperforms much larger LLM baselines
that are one to two orders of magnitude bigger. In compute-
constrained environments, OWNER is a viable alternative to
larger models, especially LLMs.

2) ZERO-SHOT BASELINES
Even compared to zero-shot models, which are more
supervised, OWNER remains competitive. In general, zero-
shot baselines outperform OWNER, as expected, since they
have access to the list of entity types, including their names,
descriptions, and some exemplars. Nevertheless, OWNER
matches or surpasses the performance of UniNER on six
datasets, ChatIE on five datasets, GNER (T5) on five
datasets, GoLLIE on four datasets, GNER (T5-xxl) on

12The version is Llama-3.1-8B-Instruct.
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FIGURE 6. NER evaluation results of OWNER, zero-shot baselines, and unsupervised baselines. Performance is measured using AMI. It encompasses
mention detection and entity typing. Exact values are displayed in Table 1.

TABLE 1. NER evaluation results of OWNER, zero-shot baselines, and unsupervised baselines. Performance is measured using AMI. It encompasses
mention detection and entity typing. The best AMI for each DT dataset and setting (zero-shot, unsupervised) is highlighted in bold.

three datasets, and GliNER L on one dataset. Without
accessing annotated data in DT or knowing the target entity
types TT , OWNER achieves commendable results compared
to recent zero-shot approaches.

3) IMPACT OF THE OPEN-WORLD CONSTRAINT ON LLMS
In the introduction, we stated that zero-shot models are more
supervised than unsupervised and open-world approaches
because they have access to the list of entity types. Indeed,
as observed in Table 1, zero-shot models typically perform
better than open-world approaches. However, two concerns
may arise:

• Perhaps the performance gap is due to architectural dif-
ferences between zero-shot and open-world baselines.

• Can we quantify the loss caused by the open-world
constraint?

These questions can be addressed by comparing ChatIE
(zero-shot) with ChatIE Uns (unsupervised and open-world).
ChatIE Uns uses the same LLM, architecture (dual-stage
prompting with 1) type elicitation and 2) entity extraction),
and prompts as ChatIE. The only distinction is that ChatIE
Uns omits the list of entity type names from the type
elicitation prompt. In Table 1, ChatIE Uns shows markedly
lower performance compared to ChatIE, with an average
gap of 21% in AMI. This represents a relative 57%
performance loss. The small modification of removing
the predefined list of entity types significantly impacts
performance. This demonstrates that entity type specification
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serves as a strong supervision signal, making unsupervised
and open-world NER much more challenging than zero-shot
NER. By comparison, OWNER (Pile-NER) only experiences
a 2.5% AMI gap compared to ChatIE (a relative 7% loss).
This highlights the architectural superiority of OWNER over
LLM-based prompting baselines.

Another conclusion is that, when entity types are known
in advance, employing zero-shot models is advisable due to
their superior performance. However, for exploratory scenar-
ios where entity types are not predetermined, unsupervised
NERs, such as OWNER, lead in performance.

To conclude, we sought to explain the significant perfor-
mance drop between ChatIE and ChatIE Uns. Upon closer
examination, we attribute this to the overspecific entity types.
In Table 6, which reports the estimation of the number of
clusters for OWNER and unsupervised baselines, ChatIE Uns
identified 11,840 entity types on the GUM dataset (instead of
10) or 14 680 types on i2b2 (instead of 20). The predicted
entity types are overly specific, often concerning just a few
entities: lantern festival, theme music, light show, laser light
show. This occurs because ChatIE Uns lacks a merging or
consensus mechanism for entity types, relying solely on the
entity type text as the identifier. This issue also affects other
unsupervised baselines, such as UniNER Uns.

4) SMALL VS. LARGE LANGUAGE MODELS
We conclude this baseline evaluation by reflecting on the
size of the models involved. Notably, while most baselines
are based on LLMs or transformers with at least 7 billion
parameters, smaller models like GliNER and OWNER
perform remarkably well despite their modest size (see
Table 1). In particular, OWNER outperforms LLMs that are
60 to 100 times larger, and similarly, GliNER competes
well against models two orders of magnitude larger. As a
result, OWNER and GliNER are particularly appealing for
real-world applications since they require significantly less
computational power and more affordable infrastructure to
operate.

Another observation is the shared characteristic of small
size and high performance: their foundation on encoders.
GNER (T5), based on a full transformer, performs less
effectively at an equivalent size (Table 2). We believe that
information extraction tasks such as NER are well-suited to
an encoder formalism (making predictions using embeddings
through neural networks), which benefits performance.
In contrast, full transformers and decoders (LLMs) generate
text, which is then interpreted to make predictions. This
introduces a dual challenge: performing the task correctly
(as with the encoder) while precisely adhering to the
output format and avoiding hallucinations. Thus, the task
becomes more complex than with an encoder, requiring a
larger number of parameters to achieve the same level of
performance.

Finally, an interesting aspect to discuss is distillation.
OWNER and GliNER were trained on the Pile-NER dataset,
which was automatically annotated by UniNER Uns. This

process is somewhat related to distillation (Zhou et al. [57]
refer to it as targeted distillation). In practice, we observe that
the student models outperform the teacher model UniNER
Uns (see Table 1). This is a compelling result. It suggests that
the most promising approaches for practical deployments are
hybrid methods (like OWNER and GliNER), which leverage
LLMs solely for data generation and annotation, while the
final model is a small encoder that is cost-effective to run but
remains highly effective.

B. CROSS-DOMAIN CAPABILITIES
1) VALIDATING OWNER’S CROSS-DOMAIN CAPABILITIES
To validate OWNER’s cross-domain capability, we trained it
on CoNLL. CoNLL is a general-purpose dataset containing
only four types of generic entities, not domain-specific
ones. As shown in Table 1, OWNER (CoNLL) surpasses
unsupervised and open-world baselines, clearly demonstrat-
ing OWNER’s ability to generalize across distant domains.
However, we observe a performance decrease of 0.7% in
AMI compared to OWNER (Pile-NER), indicating that using
a more diverse dataset in terms of domain and entity types is
beneficial for performance.

2) MENTION DETECTION ANALYSIS
In mention detection, CoNLL and Pile-NER result in
models with different behaviors. In Table 3, we present
the precision and recall of OWNER for mention detection.
Overall, OWNER tends to have higher precision when trained
on CoNLL and higher recall when trained on Pile-NER.
This is expected; the diversity of Pile-NER helps OWNER
detect entities more effectively, while the human quality
of annotations in CoNLL enhances OWNER’s precision.
This observation is confirmed by examining the confusion
matrices in Fig. 7. On one hand, Pile-NER leads to
better detection of domain-specific entity types, such as
algorithm, field, metrics, or task, but it also results in more
false positives (497 for Pile-NER vs. 151 for CoNLL).
On the other hand, CoNLL achieves better recall for person,
location, or organization, which are precisely the entity types
annotated in this dataset.

Finally, some performances shown in Table 3 are low:
precision below 10% for FabNER, GENTLE, GUM,
or Restaurant (CoNLL), and recall below 10% for i2b2
(Pile-NER). These are far from satisfactory for production
deployment and illustrate the complexity of cross-domain
learning and open-world NER. In fact, LLM-based baselines
achieve even lower results than OWNER, as displayed in
Fig. 6. This indicates that significant progress is still needed
to achieve strong performance in very specific domains with
specific entity types, where annotated data is lacking.

3) ARE FALSE POSITIVES A PROBLEM?
The issue of higher false positives with Pile-NER is intriguing
and warrants further in-depth study. We manually examined
the 497 false positives shown in Fig. 7. Of these, 53%
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TABLE 2. Comparative analysis of the language model backbones and the number of parameters in OWNER, zero-shot baselines, and unsupervised
baselines.

TABLE 3. OWNER mention detection evaluation results. The best
precision and recall for each DT dataset are highlighted in bold.

are correct entities not annotated in AI, 42% intersect with
true entities (boundary problem), and 5% are incorrect
predictions. Overall, the boundary problem accounts for the
false positive difference between CoNLL and Pile-NER,
likely due to Pile-NER’s imperfect annotations.

The 53% correct entities not annotated in AI derive from
existing entity types (many missing entities are acronyms,
such as FPR = false positive rate) and new entity types (not
among the 14 entity types annotated in AI). OWNER’s ability
to identify correct entities of new entity types underscores its
novelty detection capabilities. This behavior is not observed
with other zero-shot and few-shot baselines, which have a
predefined set of entity types.

In conclusion, OWNER’s cross-domain capabilities are
highlighted by the strong performance of OWNER (CoNLL)
on the DT datasets. Broadly, CoNLL’s manual annotations
yield precise results, while the diversity of Pile-NER

FIGURE 7. Mention detection confusion matrices of OWNER on AI. The ∅
row indicates the false positives, while the ∅ column indicates the false
negatives per entity type.

enhances recall at the expense of precision. Additionally,
the analysis of the confusion matrices shows that OWNER
identifies entities of novel entity types that were previously
unknown. In scenarios focused on novelty detection or
exploration, where recall is crucial, we recommend using
Pile-NER. Its diversity of domains and entity types boosts
performance and it is relatively inexpensive to produce as it
does not depend on manual annotations.

C. BIO SEQUENCE LABELING
In Sect. III-A, we propose using a BIO extractor for MD,
as we anticipate that the simplicity of this architecture
will enhance generalizability across new target domains
DT . In Table 4, we report the F1 scores of various MD
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TABLE 4. Mention detection evaluation results for different architectures
trained on CoNLL and tested on five DT datasets. Performance is
measured using the F1 score. The best F1 score for each DT dataset is
highlighted in bold.

architectures, trained on CoNLL and tested on five DT
datasets. We evaluate the following architectures:

• BIO: This is the architecture implemented by OWNER.
• PURE [2]: A span-based extractor that combines the
start and end embeddings of a candidate span with a
perceptron.

• SpanProto [5]: A span-based extractor that uses bilinear
neurons to combine start and end embeddings of a
candidate span, offering faster predictions compared to
PURE.

• WL-Coref [29]: A span-based extractor that identifies
the head of the entity and reconstructs its boundaries
using a convolutional network, addressing the quadratic
complexity issue of traditional span-based extractors.

In a fully supervised setting, PURE, SpanProto, and
WL-Coref are slightly superior to BIO sequence labeling [2],
[5], [29]. However, in our unsupervised cross-domain setting,
BIO significantly outperforms span-based extractors, with
an average gap of 40% with PURE, 15% with SpanProto,
and 10% with WL-Coref, while also being faster to train.
We believe that the simplicity of the BIO architecture reduces
overfitting and enhances generalizability to new domains.
This observation aligns with the findings of Fang et al. [6],
who also employ BIO sequence labeling for their few-shot
MANNER model.

D. IMPACT OF EMBEDDING REFINEMENT
An important component of OWNER is embedding refine-
ment (ER), which aims to enhance encoder representations
for entity clustering using contrastive learning. In Table 5,
we compare OWNER’s entity typing performance without
ER and with ER trained on CoNLL or Pile-NER. We use the
gold entity spans from DT (perfect MD) to assess only the
effect of embedding refinement. This is why the AMI scores
are higher than in Table 1.
ER significantly improves performance with both CoNLL

and Pile-NER on each of the 13DT datasets, with an average
AMI gain of 12.8% for CoNLL and 16.7% for Pile-NER
compared to OWNER without ER. The gain is particularly
notable for datasets challenging for raw BERT embeddings,
such as GENTLE, GUM, i2b2, Movie, Restaurant, or WNUT
17. Pile-NER’s superior performance can be attributed to
its diversity of entity types (13 000 entity types), which

allows for more precise fine-tuning of entity embeddings.
Nevertheless, CoNLL achieves commendable performances
despite having only four entity types. This supports the
hypothesis that refining entity embeddings on DS with
contrastive learning also benefits distant DT .
To visually represent the effects of embedding refinement,

we display two-dimensional t-SNE [93] representations of the
entity embeddings for the Science and Restaurant datasets
in Fig. 8. The Science entities are already well isolated
without ER (see Table 5). However, several improvements are
noticeable: better separation of discipline, organization, and
academicjournal (CoNLL and Pile-NER); better separation
of chemicalelement and chemicalcompound (Pile-NER); and
the disappearance of the multi-type cluster at the top of the
w/o ER figure. The effects of ER are more evident with
the challenging Restaurant dataset: without ER, OWNER
cannot discriminate any entity type, and we see significant
improvements with ER on CoNLL or Pile-NER. Notably,
ER with CoNLL leads to relatively good separation of
cuisine, hours, or price, even though CoNLL does not
contain such entities. The effects aremore comprehensive and
pronounced with Pile-NER.

In conclusion, embedding refinement significantly
enhances entity typing performance with CoNLL and Pile-
NER, showing respective AMI improvements of 12.8% and
16.7%. The best results are achieved with Pile-NER due to
its diversity in entity types. ER performs well with the distant
DT dataset CoNLL, demonstrating noticeable improvements
on unseen entity types. It also shows that ER is beneficial
even with a labeled dataset with a limited set of entity types
(4 for CoNLL).

E. ESTIMATING THE NUMBER OF CLUSTERS K̂
1) COMPARISON WITH THE BASELINES
Sincewe lack information about entity types, unlike zero-shot
approaches, OWNER must infer both the types of entities
and their number. In this section, we focus solely on the
brute force cluster estimation. In Table 6, we present eachDT
dataset’s true number of entity types k , the estimated number
of clusters k̂ , the corresponding AMI score with k̂ (as shown
in Fig. 6), and the AMI score with the ideal k .

Overall, OWNER tends to overestimate the number of
entity types, a trend more pronounced with Pile-NER than
with CoNLL. For Pile-NER, this overestimation can be
attributed to its fine-grained entity types. Pile-NER was
annotated using UniNER Uns (with GPT-3.5). Thus, Pile-
NER shares the fine-grained entity type weakness of UniNER
Uns. Fortunately, OWNER somewhat alleviates this issue
by providing a more reasonable estimate of the number of
clusters, as shown in Table 6. In any case, compared to
UniNER Uns and ChatIE Uns, OWNER’s estimations are
much closer to the actual values.

AMI scores with the ideal k are close to those with k̂
(an AMI gap of 0.8% for CoNLL and 1.5% for Pile-NER
on average), indicating that the clusterings are qualitatively
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TABLE 5. Ablation study for embedding refinement (ER). Entity typing evaluation results of OWNER with and without embedding refinement, trained on
CoNLL or Pile-NER. Performance is measured using AMI on gold entity spans (perfect mention detection). The best AMI for each DT dataset is highlighted
in bold.

FIGURE 8. Visualization of the entity embeddings of OWNER with or without embedding refinement (ER). Entity embeddings are displayed using
two-dimensional t-SNE. Each subfigure, from left to right, shows: 1) without embedding refinement, 2) embedding refinement on CoNLL, and 3)
embedding refinement on Pile-NER.

similar even when k̂ ≫ k . This can be explained by the
long-tail distribution of cluster membership. In the second
confusion matrix of Fig. 10, a minority of clusters contain
most entities, while the rest contain a few specific entities.
The last 17 clusters actually represent false positives13 and
members of the misc class, which by definition consists of
multiple entity types. This explains why, despite the number
of clusters, performance does not drastically decline, as the
additional clusters mainly account for false positives and
composite classes.

Finally, we focus on the baselines. ChatIE Uns and
UniNER Uns make very poor cluster number estimations,
often 10 to 100 times larger than the actual number. This
is because they explicitly express entity types using words,
and the same entity type can be represented by different
terms. For example, person may be expressed as PER,
person, individual, etc., all considered different clusters.
Moreover, ChatIE Uns and UniNER Uns tend to predict
overly fine-grained entity types (e.g., lantern festival, theme
music, light show, or laser light show). In practice, they
predict so many different entity types that the results from
UniNER Uns and ChatIE Uns become unmanageable and
practically useless due to insufficient synthesis. In contrast,
OWNER’s more reasonable number of clusters is easier to
analyze in practice.We believe this highlights an architectural
advantage of OWNER: clustering the embeddings, rather

13These can be correct entities, as discussed in Sect. V-B.

than specific entity type names, allows for the creation of
more synthetic clusters.

2) FASTER ESTIMATION USING TERNARY SEARCH
Up to this point, we have used the brute force algorithm to
estimate the number of clusters k̂ . While the computational
time is acceptable for small datasets, it can take hours
for the largest DT datasets, such as i2b2 or GUM (see
Table 8), representing a significant portion of the runtime.
For example, cluster estimation takes an average of 13.6 h
for DS = Pile-NER and DT = i2b2. This motivates
the use of the ternary search algorithm we introduced in
Sect. III-B2.
In Table 7, we compare the estimation of k̂ using the

brute force algorithm and ternary search, along with the
corresponding NER AMI scores. In Table 8, we show
the corresponding execution times. We observe that the
estimation of k̂ with ternary search matches the brute force
algorithm or falls within the standard deviation range. As a
result, ternary search AMI scores are virtually identical to
those from brute force.

The gain in computational time is particularly noteworthy.
As shown in Table 8, ternary search is 1.7 to 2.7 times faster
than the brute force algorithm, even for the smallest datasets.
The benefit is especially impressive for the large i2b2 dataset
with its large k̂ , where the gain is twenty-fold. Originally,
runs lasted 13.6 h, but with ternary search, they are reduced
to just 41min. The computational gain is less pronounced
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TABLE 6. Evaluation of OWNER’s estimation of the number of clusters k̂ using BIC. NER evaluation results of OWNER with the exact number of entity types
(AMI with k) and with the automatic estimation (AMI with k̂) are also shown. The best AMI for each DS and DT dataset is highlighted in bold. The true
number of entity types k and the predicted number of clusters k̂ are displayed in blue. We also include the k̂ estimated by the unsupervised baselines.

TABLE 7. Comparison of OWNER’s estimation of the number of clusters k̂ using the brute force algorithm or ternary search. OWNER was trained on
Pile-NER. NER evaluation results of OWNER with the exact number of entity types (AMI with k) and with the automatic estimation (brute AMI with k̂ and
ternary AMI with k̂) are also shown. The best AMI for each DT dataset is highlighted in bold. The true number of entity types k and the predicted number
of clusters k̂ are displayed in blue.

TABLE 8. Comparison of the execution time (in seconds) for OWNER’s estimation of the number of clusters using the brute force algorithm or ternary
search. OWNER was trained on Pile-NER.

for smaller sets of entity types (though still significant)
due to the slight rugosity of the BIC curve. This rugosity
necessitates multiple sequential cluster computations once
kmax − kmin ≤ 5.

The i2b2 dataset case is particularly interesting. In Fig. 9,
ternary search quickly converges to the minimum value
without evaluating every possible k̂ . Specifically, it eliminates
the range [0, 140] clusters in two steps (5min), whereas brute
force requires 2 h to evaluate the same interval. Ternary search
determines k̂ after 21 clusterings, compared to the 500 needed
by the brute-force algorithm (a 24-fold reduction).

In conclusion, the computational gain from ternary search
is particularly significant for large DT datasets with many
different entity types. It is also relevant for smaller datasets,
achieving a two-fold decrease in calculation time. Empiri-
cally, we find no significant difference in the estimation of
k̂ and AMI scores between brute force and ternary search.

F. QUALITATIVE ANALYSIS
We conclude this analysis by providing a qualitative overview
of OWNER’s performance from two perspectives: 1) an
examination of the confusion matrices to identify OWNER’s
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FIGURE 9. Visualization of the BIC curves computed to estimate the
number of clusters k̂. OWNER is trained on Pile-NER and tested on i2b2.
Each cross represents a computed clustering. Using the brute force
algorithm, 500 clusterings were calculated, while ternary search required
only 21.

strengths and weaknesses, and 2) an evaluation of OWNER’s
naming capabilities.

1) CONFUSION MATRICES
In Fig. 10, we present three confusion matrices for OWNER,
trained with different DS datasets and tested on various DT
datasets.

Thesematrices reveal a distinct diagonal pattern, indicating
that OWNER accurately identifies most entity types. This is
remarkable, as OWNER can detect and structure entities in a
manner resembling the ground truth, despite the absence of
annotated data inDT and any prior knowledge of entity types
or their numbers.

To analyze OWNER’s weaknesses, we focus on the
confusions. Impure clusters can be problematic if the model
groups unrelated entity types. However, this issue is not
present here. OWNER merges:

• country and location (Science and AI);
• person and scientist/researcher (Science and AI);
• enzyme and protein (Pile-NER Science);
• task, product, field, algorithm (AI);
• conference, university, organization (AI).
These impure clusters arise because OWNER confuses

semantically similar entity types. This behavior is expected

FIGURE 10. NER confusion matrices of OWNER tested on various DT
datasets. Columns and rows were reordered using the algorithm
described in App. D. The ∅ row indicates the false positives, and the ∅
column indicates the false negatives.

and reassuring. It is a limitation inherent to open-world NER.
Without a predefined list of entity types, OWNER organizes
entities into a semantically coherent scheme, which is a valid
typing system, though not identical to the dataset’s annotation
schema.

Finally, OWNER categorizes false positives and misc
entities as composites of multiple underlying types. This
tendency explains why OWNER often overestimates the
actual number of entity types.

In conclusion, OWNER forms a coherent typing scheme
closely aligned with the true entity types. This analysis under-
scores OWNER’s exploratory capabilities. It can identify
and organize entities into meaningful groups without labeled
data in DT . OWNER effectively processes unannotated
documents to uncover primary entities and their types, paving
the way for further refinement through more supervised
methods.
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TABLE 9. Predicted names (using BERT and LLMs) for six entity type clusters identified by OWNER on Science when trained on Pile-NER. The true entity
type distributions are also displayed. The corresponding confusion matrix is shown in Fig. 10 (a).

2) NAMING THE CLUSTERS
The second part of our qualitative analysis focuses on naming
the clusters. We proposed two approaches: one using BERT
embeddings generated by the entity encoder, and the other
employing LLM prompting. In Table 9, we present six
clusters with names predicted by either BERT or Llama
3.1 Instruct.

We observe that the proposed names, whether from
BERT or the LLM, are generally relevant and descriptive
of the entity types in the clusters (see the columns True
entity types and Example entities in Table 9). However,
most names are not perfect enough to entirely replace
human intervention. For instance, year (BERT) is less
appropriate than date, and person (Llama 3.1) is less
specific than scientist. Nevertheless, they provide a fairly
precise and concise idea of the cluster’s contents, effec-
tively serving the purpose of describing and naming
clusters.

Regarding the advantage or difference between BERT
and LLM naming, the results are quite similar. The LLM
tends to provide a single name that generally represents the
cluster well, whereas the multiple names from BERT can
sometimes offer a more precise understanding of the content.
Additionally, BERT’s limitation to predict a single token
does not seem particularly impactful, as the names remain
descriptive (even for cluster 3, which the LLM described with
two words).

The case of cluster 9 is particularly interesting. This cluster
comprises persons and scientists. We expected BERT to
predict the term person, but it did not. In fact, BERT never
predicted the name person for this cluster. We believe this is
because the phrase ‘‘X is a person’’ is not commonly used (the
mere presence of a name implies it’s a person), so BERT does
not predict it. Instead, BERT predicts terms like physicist,
historian, biologist (jobs), and Christian and vegetarian
(philosophy and religion). It is indeed more common to
say ‘‘X is a [job]’’ or ‘‘X is a [religion/philosophy]’’
than ‘‘X is a person.’’ This property is a weakness of
BERT naming and is directly linked to its pretraining
corpus.

Overall, we find that using BERT to name clusters is
relevant because the results are generally coherent and
descriptive, and importantly, there is no additional cost to
its use, as BERT embeddings are already generated for
clustering (unlike the LLM).

Naming the clusters also provides insight into OWNER’s
internal reasoning, particularly regarding potential weak-
nesses: clusters composed solely of false positives (cluster
23) and types of entities split into multiple clusters (clusters
6, 8).

Cluster 23 consists entirely of false positives, yet in
practice, it is made up solely of dates, a type of entity that
had not been annotated in Science. This effectively illustrates
the conclusion of Sect. V-B that OWNER can detect types of
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entities not anticipated in advance, which is impossible with
zero-shot models.

Finally, clusters 6 and 8 mostly contain astronomical
objects, and the separation of these two types of entities is
an error from the dataset’s annotation perspective. However,
upon closer inspection of the proposed names, we notice
that cluster 6 contains small celestial objects (asteroids),
while cluster 8 focuses more on planets and other massive
astronomical objects. Although this separation is technically
an error (from the annotation and metrics point of view),
the decision is qualitatively and semantically justified and
highlights the quality of OWNER’s predictions.

VI. CONCLUSION
In this work, we introduce OWNER, our unsupervised and
open-world NER model that transfers knowledge from DS
to DT without supervision. The literature review indicates
that while significant progress has been made in lower-
resource NER, particularly zero-shot NER, unsupervised and
open-world NER still lags behind. OWNER is proposed as
the first NER model compatible with a fully unsupervised
open-world scenario, aiming to provide a strong baseline and
stimulate further research. OWNER is built upon a simple
yet innovative architecture, featuring an encoder prompting,
clustering, and embedding refinement triangle.

Tests on 13 domain-specific datasets demonstrate that
OWNER outperforms LLM-based open-world NERs and
remains competitive compared to state-of-the-art zero-shot
NER models, without requiring prior knowledge ofDT . This
result is impressive, given that OWNER’s simple encoder
embeddings compete with much larger LLMs. We believe
that OWNER’s success is due to its architectural simplicity
and parameter efficiency, which achieve state-of-the-art
results.

Ablation studies show that embedding refinement signif-
icantly enhances performance and works well even with
a distant DT dataset. Ternary search considerably reduces
the computational time needed to estimate the number of
clusters (generally two times faster and up to twenty times
faster on the largest dataset). Qualitative results demonstrate
OWNER’s exploratory capabilities and its ability to organize
entities into semantically coherent clusters close to actual
entity types.

Finally, we demonstrate that an unsupervised and
open-world NER is achievable without the use of LLMs,
achieving better performance than LLMs and also being
capable of naming the clusters. A key advantage of OWNER
over LLM-based approaches is its ability to group entities into
clusters that are semantically coherent and closely aligned
with the true entity types. In contrast, LLMs struggle to
generalize and tend to predict entity types that are overly
specific, making them impractical and difficult to analyze.

For future work, we aim to expand OWNER for use
in a low-resource active learning context [94]. We believe

TABLE 10. List of abbreviations.

TABLE 11. List of mathematical notations.

OWNER’s ability to structure entities without supervision
could help bootstrap an active learning cycle.

Another research area is combining open-world and
closed-world NER. The objective is to allow users to
predefine a typing scheme for known entities while leaving
room for novel, unseen knowledge, for which the model will
generate a typing structure. Preliminary work [16], [95], [96]
has been done in the related field of relation extraction, but
these models are not currently low-resource.

APPENDIX A
ABBREVIATIONS AND MATHEMATICAL NOTATIONS
Abbreviations are listed in Table 10. Mathematical notations
are listed in Table 11.

APPENDIX B
ENCODER EMBEDDINGS IMPACT
With OWNER, we primarily use DeBERTa v3 [50], [91]
for mention detection and BERT [4] for entity typing.
In this section, we evaluate the performance of other
popular encoders, such as RoBERTa [98], ERNIE [52], and
ELECTRA [99].
In Table 12, we present the mention detection performance

of various encoders when OWNER is trained on Pile-NER,
and in Table 13, we show the entity typing performance of
the same encoders (also on Pile-NER). Overall, OWNER
performs relatively well, regardless of the encoder used as
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TABLE 12. Mention detection evaluation results of OWNER trained on Pile-NER, using various encoder embeddings. Performance is measured using the
F1 score. The best F1 score for each DT dataset is highlighted in bold.

TABLE 13. Entity typing evaluation results of OWNER trained on Pile-NER, using various encoder embeddings. Performance is measured using AMI. Entity
typing is evaluated using gold entity spans (perfect mention detection). The best AMI for each DT dataset is highlighted in bold.

TABLE 14. Entity typing evaluation results of OWNER trained on Pile-NER, using various clustering algorithms. Performance is measured using AMI. Entity
typing is evaluated using gold entity spans (perfect mention detection). The best AMI for each DT dataset is highlighted in bold.

TABLE 15. Statistics of the DS and DT datasets in our benchmark.

a backbone. All the evaluated encoder embeddings lead
to better performance than UniNER Uns and ChatIE Uns.
Interestingly, the older model BERT remains competitive,
performing similarly to more recent alternatives.

For mention detection, DeBERTa v3 outperforms the
other approaches, with an average gap of 1.2% compared
to the second-best model, RoBERTa. We attribute this

superior performance to DeBERTa v3’s richer and broader
pre-training dataset compared to the other encoders. BERT
shows the weakest performance, which supports our choice
of DeBERTa v3 as the backbone for MD.

For entity typing, the performance is closer among BERT,
RoBERTa, and ERNIE, which are nearly indistinguishable,
especially considering the standard deviation. ELECTRA
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FIGURE 11. Visualization of the different reordering steps used to
reorganize the rows and columns of OWNER’s confusion matrices.
OWNER was trained on Pile-NER and tested on Science.

and DeBERTa v3 have lower AMI scores. The behavior of
DeBERTa v3 is surprising, as it is generally regarded as the
best-performing encoder currently available. DeBERTa v3’s
performance is even worse without embedding refinement
(not shown), achieving only half of BERT’s performance
without embedding refinement. The same conclusion applies
to ELECTRA. DeBERTa v3 and ELECTRA appear to have
a less entity-type-oriented embedding space than BERT. As a
result, we have chosen BERT embeddings for OWNER.
ERNIE and RoBERTa would also have been valid choices.

APPENDIX C
CLUSTERING ALGORITHMS COMPARISON
As presented in Sect. III-B, OWNER employs k-means
to cluster entity embeddings, using a heuristic to estimate
the number of clusters. In this section, we evaluate the
performance of other clustering algorithms in comparison to
k-means.

We focus on clustering models that do not require a
predefined number of clusters. Available models include
DBSCAN [100], OPTICS [71], HDBSCAN [70], affinity
propagation [101], Agglomerative Clustering (HAC) [102],
and Gaussian Mixture Models (GMM) using BIC [69]. How-
ever, HAC and DBSCAN depend on hyperparameters (such
as density) that are difficult to adjust without prior knowledge
of k , and affinity propagation does not scale well for large
datasets. Therefore, we limit our evaluation to HDBSCAN,
OPTICS, and GMM. HDBSCAN and OPTICS are density-
based, allowing nonspherical clusters. GMM generalizes
k-means by providing continuous cluster assignments (soft
clustering) and forming ellipsoidal clusters.

In Table 14, we present the entity typing performance of
these clustering algorithms when OWNER is trained on Pile-
NER. K-means surpasses the other clustering algorithms,
with an average AMI gap of 19% compared to GMM, 28%
compared to HDBSCAN, and 34% compared to OPTICS.

The performance gap is particularly pronounced with
HDBSCAN and OPTICS, suggesting that density-based
clustering is not suitable for entity-type clustering. Gen-
est et al. [14] reached a similar conclusion. The primary issue
is that these methods significantly overestimate the number
of clusters, resulting in poor performance.

Interestingly, although GMM is generally considered an
improved version of k-means, it yields lower results than
k-means across our 13DT datasets. The issue is the opposite:
GMM tends to underestimate the number of clusters.
The only exception is the GENIA dataset, where GMM
outperforms k-means. This is likely because GENIA has only
four entity types, aligning well with GMM’s tendency to
underestimate k .

The conclusion of this experiment is that, despite its
simplicity, k-means is the best-performing clustering algo-
rithm. We believe its simplicity and low complexity are
advantageous in our unsupervised setting.

APPENDIX D
UNSUPERVISED CONFUSION MATRIX
A useful tool for qualitatively analyzing the performance
of a classifier is the confusion matrix [103]. Each row of
the confusion matrix represents instances in an actual class
(e.g., entity type), and each column represents instances in a
predicted class. Thus, the matrix’s diagonal displays correctly
predicted instances, while the lower and upper triangles show
errors (also called confusions).

However, when implementing models based on unsu-
pervised approaches (typically clustering), where classes
are not predefined, a confusion matrix becomes harder to
interpret. In contrast to the supervised case, there is no direct
link between class IDs and cluster IDs (meaning the first
class does not necessarily correspond to the first cluster),
so there is no inherently interpretable diagonal. To improve
the readability and interpretability of a clustering confusion
matrix, rows and columns must be reordered to display a
diagonal and group the confusions together.
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FIGURE 12. DS and DT dataset entity type distributions (I).

This appendix details the method used to reorder the rows
and columns. We use the example of the first figure of Fig. 10
(OWNER trained on Pile-NER and tested on Science). The
initial confusion matrix, without processing, is displayed in
Fig. 11 (a). It resembles a starry sky more than a confusion
matrix and is nearly impossible to interpret.

A. DIAGONAL ELICITATION
The first step is to find a diagonal in the confusion matrix.
In a supervised scenario, if the model performs correctly,
most instances are on the diagonal as the model correctly
predicts them. Similarly, we want to reorder the axes so that
the unsupervised confusion matrix shows a clear diagonal:
we aim to find the main cluster corresponding to each class.
For instance, in Fig. 11 (a), most instances of organization
are in cluster 16, and most chemicalcompound entities are in
cluster 11.

This can be formulated as reorganizing the rows and
columns so that the diagonal of the matrix is of maximal sum.

This corresponds to an assignment problem (except that the
canonical problem involves minimizing the sum). We solve
this assignment problem using the Jonker-Volgenant algo-
rithm14 [104], [105].
The resulting confusion matrix is displayed in Fig. 11 (b).

It displays a clear diagonal that is much more interpretable
than the initial confusion matrix. Nevertheless, some impor-
tant values outside the diagonal remain scattered (e.g.,
person/cluster 14, astronomicalobject/cluster 22).

B. CONFUSION GROUPING
The second step aims to bring major confusions closer to
make the matrix more readable. An ideal confusion matrix
is a band matrix, which is a sparse matrix where the
non-zero entries are confined to a diagonal band. We propose
implementing the reverse Cuthill-McKee algorithm15 [106],

14We employ the SciPy implementation of the algorithm.
15Following the SciPy implementation.
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FIGURE 13. DS and DT dataset entity type distributions (II).

[107], which aims to permute a sparse matrix into a band
matrix with a small bandwidth. In practice, not all non-zero
values are significant (some represent noise or very rare edge
cases), so we propose setting a threshold (1% of the total
instances). Below this threshold, the value is not considered
when reordering axes.

We obtain the final confusion matrix in Fig. 11 (c). We can
see that the major confusions are now grouped closer (e.g.,
person and scientist, protein and enzyme, university and
organization).

It is worth noting that the first diagonal elicitation step is
optional, as the reverse Cuthill-McKee algorithm produces
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a band matrix (i.e., with a diagonal). In practice, we have
found that this initial diagonal elicitation step helps produce
a diagonal with the maximum sum, leading to a clearer
interpretation.

APPENDIX E
DATASET STATISTICS
Wepresent theDS andDT dataset statistics in Table 15. Entity
type distributions are shown in Figs. 12 and 13.
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